14 |
LI Chao, ZHANG Daihua, HAN Song, et al. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties[J]. Advanced Materials, 2003, 15(2): 143-146.
|
15 |
OJELADE Opeyemi A, ZAMAN Sharif F. A review on Pd based catalysts for CO2 hydrogenation to methanol: In-depth activity and DRIFTS mechanistic study[J]. Catalysis Surveys from Asia, 2020, 24: 11-37.
|
16 |
COLLINS Sebastián E, CHIAVASSA Dante L, BONIVARDI Adrian L, et al. Hydrogen spillover in Ga2O3-Pd/SiO2 catalysts for methanol synthesis from CO2/H2 [J]. Catalysis Letters, 2005, 103: 83-88.
|
17 |
MA Jun, SUN Nannan, ZHANG Xuelan, et al. A short review of catalysis for CO2 conversion[J]. Catalysis Today, 2009, 148(3/4): 221-231.
|
18 |
PAZDERA Jakub, BERGER Edith, LERCHER Johannes A, et al. Conversion of CO2 to methanol over bifunctional basic-metallic catalysts[J]. Catalysis Communications, 2021, 159: 106347.
|
19 |
YANG Youwei, ZHANG Jingyu, GAO Yueqi, et al. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol[J]. Chinese Journal of Chemical Engineering, 2022, 43: 77-85.
|
20 |
XU Chaoqin, YAN Zhiqiang, YU Jian, et al. Development of stable water-resistant Cu-based catalyst for methanol synthesis[J]. Applied Catalysis A: General, 2021, 623: 118299.
|
21 |
ZHENG Huayan, NARKHEDE Nilesh, ZHANG Guoqiang, et al. Highly dispersed Cu catalyst based on the layer confinement effect of Cu/Zn/Ga-LDH for methanol synthesis[J]. Molecular Catalysis, 2021, 516: 111984.
|
22 |
YANG Huanhuan, CHEN Yanyan, CUI Xiaojing, et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation[J]. Angewandte Chemie International Edition, 2018, 130(7): 1854-1858.
|
23 |
LIU Huan, CHEN Tong, YANG Guang, et al. Investigation of active center of Cu-based catalyst for low temperature methanol synthesis from syngas in liquid phase: The contribution of Cu+ and Cu0 [J]. ChemistrySelect, 2017, 2(26): 8000-8007.
|
24 |
KARAMAN Birce Pekmezci, CAKIRYILMAZ Nurbanu, ARBAG Huseyin, et al. Performance comparison of mesoporous alumina supported Cu & Ni based catalysts in acetic acid reforming[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26257-26269.
|
25 |
SAFFARY Soheil, RAFIEE Mansoureh, VARNOOSFADERANI Mohammadreza Saeidi, et al. Smart paradigm to predict copper surface area of Cu/ZnO/Al2O3 catalyst based on synthesis parameters[J]. Chemical Engineering Research and Design, 2023, 191: 604-616.
|
26 |
ZHAO Yafan, YANG Yong, MIMS Charles, et al. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. Journal of Catalysis, 2011, 281(2): 199-211.
|
27 |
POROSOFF Marc D, YAN Binhang, CHEN Jingguang G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy & Environmental Science, 2016, 9(1): 62-73.
|
28 |
侯瑞君, 邱瑞, 孙克宁. Cu基CO2合成甲醇催化剂载体的研究进展[J]. 化工进展, 2020, 39(7): 2639-2647.
|
|
HOU Ruijun, QIU Rui, SUN Kening. Progress in the Cu-based catalyst supports for methanol synthesis from CO2 [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2639-2647.
|
29 |
LIU Xinmei, LU G Q, YAN Zifeng, et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 [J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6518-6530.
|
30 |
ZHAO Guoyan, ZHANG Chenghua, QIN Shaodong, et al. Effect of interaction between potassium and structural promoters on Fischer-Tropsch performance in iron-based catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2008, 286(1/2): 137-142.
|
31 |
SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81.
|
32 |
安欣, 左宜赞, 张强, 等. Cu/Zn/Al/Zr纳米纤维催化剂上的CO2加氢合成甲醇过程[J]. 中国化学工程学报(英文), 2009, 17(1): 88–94.
|
|
AN Xin, ZUO Yizan, ZHANG Qianget al. Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88–94.
|
33 |
姜秀云, 杨文兵, 宋昊, 等. 甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究[J]. 燃料化学学报(中英文), 2023, 51(1): 120-128.
|
|
JIANG Xiuyun, YANG Wenbing, SONG Hao, et al. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 120-128.
|
34 |
FANG Xin, Yuhan MEN, WU Fan, et al. Promoting CO2 hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite[J]. Chemical Engineering Journal, 2019, 378: 122052.
|
35 |
张一凡, 杨文兵, 马清祥, 等. 氮化碳对Cu-ZnO-Al2O3催化CO2加氢合成甲醇的影响[J]. 石油学报(石油加工), 2021, 37(3): 508-517.
|
|
ZHANG Yifan, YANG Wenbing, MA Qingxiang, et al. Effect of carbon nitride addition on Cu-ZnO-Al2O3 catalytic performance for CO2 hydrogenation to methanol[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 508-517.
|
36 |
LI Congming, YUAN Xingdong, FUJIMOTO Kaoru. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Applied Catalysis A: General, 2014, 469: 306-311.
|
37 |
REN Hong, XU Chenghua, ZHAO Haoyang, et al. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 261-267.
|
38 |
YUE Wenzhe, LI Yanhong, WEI Wan, et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. Angewandte Chemie International Edition, 2021, 60(33): 18289-18294.
|
39 |
LI Huazheng, QIU Chenglong, REN Shoujie, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667-671.
|
40 |
陈茂重, 王斓懿, 于学华, 等. 不同水热条件下MnO2的制备及其催化炭烟颗粒燃烧性能[J]. 工业催化, 2018, 26(10): 56-63.
|
|
CHEN Maozhong, WANG Lanyi, YU Xuehua, et al. Preparation of MnO2 under different hydrothermal conditions and its catalytic performance for soot combustion[J]. Industrial Catalysis, 2018, 26(10): 56-63.
|
41 |
LIU Ruiwen, QIN Zuzeng, JI Hongbing, et al. Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16648-16655.
|
1 |
赵震宇, 姚舜, 杨朔鹏, 等. “双碳” 目标下:中国CCUS发展现状、存在问题及建议[J]. 环境科学, 2023, 44(2): 1128-1138.
|
|
ZHAO Zhenyu, YAO Shun, YANG Shuopeng, et al. Under goals of carbon peaking and carbon neutrality: Status, problems, and suggestions of CCUS in China[J]. Environmental Science, 2023, 44(2): 1128-1138.
|
2 |
赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535.
|
|
ZHAO Jinbo, BIAN Fengming. Research progress on the basis and application of chemical transformation of CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535.
|
3 |
BRYNOLF Selma, TALJEGARD Maria, GRAHN Maria, et al. Electrofuels for the transport sector: A review of production costs[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1887-1905.
|
4 |
WANG Xilong, ALABSI Mohnnad H, CHEN Xingzhu, et al. CO2 hydrogenation to methanol over PdZn catalysts on bimetallic modified dendritic mesoporous silica nanospheres[J]. Chemical Engineering Journal, 2023, 476: 146596.
|
5 |
SAKAKURA Toshiyasu, CHOI Jun-Chul, YASUDA Hiroyuki. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387.
|
6 |
BENSON Eric E, KUBIAK Clifford P, SATHRUM Aaron J, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews, 2009, 38(1): 89-99.
|
7 |
HE Mingyuan, SUN Yuhan, HAN Buxing. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality[J]. Angewandte Chemie International Edition, 2022, 134(15): e202112835.
|
8 |
CENTI Gabriele, QUADRELLI Elsje Alessandra, PERATHONER Siglinda. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy & Environmental Science, 2013, 6(6): 1711-1731.
|
9 |
郭嘉懿, 何育荣, 马晶晶, 等. 二氧化碳催化加氢制甲醇研究进展[J]. 洁净煤技术, 2023, 29(4): 49-64.
|
|
GUO Jiayi, HE Yurong, MA Jingjing, et al. Research progress on catalytic hydrogenation of carbon dioxide to methanol[J]. Clean Coal Technology, 2023, 29(4): 49-64.
|
10 |
叶知远, 饶娜, 夏菖佑, 等. CO2加氢制甲醇催化剂与项目进展研究[J/OL]. 洁净煤技术, .
|
|
YE Zhiyuan, RAO Na, XIA Changyou, et al. Advances in catalysts and project progress for CO2 hydrogenation to methanol[J/OL]. Clean Coal Technology, .
|
11 |
徐敏杰, 朱明辉, 陈天元, 等. CO2高值化利用:CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576.
|
|
XU Minjie, ZHU Minghui, CHEN Tianyuan, et al. High value utilization of CO2: Research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 565-576.
|
12 |
焦春学, 慕红梅, 高鹏, 等. In2O3基催化剂在热催化二氧化碳加氢反应中的研究进展[J]. 燃料化学学报(中英文), 2023, 51(12): 1701-1717.
|
|
JIAO Chunxue, MU Hongmei, GAO Peng, et al. Progress of In2O3-based catalysts in thermal catalytic CO2 hydrogenation reaction[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1701-1717.
|
13 |
BELLINGHAM J R, MACKENZIE A P, PHILLIPS W A. Precise measurements of oxygen content: Oxygen vacancies in transparent conducting indium oxide films[J]. Applied Physics Letters, 1991, 58(22): 2506-2508.
|