化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2739-2759.DOI: 10.16085/j.issn.1000-6613.2023-1831
• 二氧化碳捕集与资源化利用 • 上一篇
苗诒贺1(), 王耀祖1, 刘雨杭1, 朱炫灿2, 李佳3, 于立军1()
收稿日期:
2023-10-18
修回日期:
2024-02-27
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
于立军
作者简介:
苗诒贺(1993—),男,助理研究员,研究方向为吸附法二氧化碳捕集。E-mail:miaoyihe@sjtu.edu.cn。
基金资助:
MIAO Yihe1(), WANG Yaozu1, LIU Yuhang1, ZHU Xuancan2, LI Jia3, YU Lijun1()
Received:
2023-10-18
Revised:
2024-02-27
Online:
2024-05-15
Published:
2024-06-15
Contact:
YU Lijun
摘要:
固态胺是固体吸附CO2捕集技术路线中的研究热点,是烟气碳捕集和直接空气碳捕集技术中最有应用前景的吸附剂材料,近年来受到广泛关注。目前,固态胺吸附剂的吸脱附性能以及热化学稳定性仍有较大提升空间。本文综述了近年来表面活性剂、胺类和无机物类,以及环氧化物、螯合剂和含硫化合物等添加剂对固态胺吸附剂吸附能力增强和热化学稳定性提升的研究成果。在此基础上,进一步介绍了不同种类添加剂对固态胺吸附剂的改性机理,总结了在不同碳捕集工况下添加剂对固态胺吸附剂的改性特点。尽管现有研究已经取得了一些进展,但添加剂改性固态胺吸附剂仍然面临挑战,尤其是目前尚未能充分实现增强固态胺吸附剂的吸附能力和热化学稳定性的双重目标。此外,鉴于不同碳捕集工况下气体成分显著不同,未来研究需要更加明晰不同碳捕集工况下添加剂对固态胺吸附剂吸脱附热力学、动力学以及热化学稳定性的影响,并根据具体碳捕集工况有针对性地设计添加剂改性方案。
中图分类号:
苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759.
MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759.
载体与模板剂 | 胺组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.23 | NA | [ |
SBA-15+P123 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 4.80 | NA | [ |
MCM-41+DTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.50 | NA | [ |
PE -MCM-41 | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约4.38 | NA | [ |
PE -MCM-41+CTAB | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约10.06 | NA | [ |
KIT-1 | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 2.71 | 0.21 | [ |
KIT-1+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 4.19 | 0.36 | [ |
KIT-1 | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.3 | 约0.18 | [ |
KIT-1+CTAB | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.1 | 约0.27 | [ |
MCM-48 | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.16 | 0.22 | [ |
MCM-48+CTAB | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.59 | 0.30 | [ |
MCM-48 | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.01 | 0.10 | [ |
MCM-48+CTAB | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.54 | 0.18 | [ |
MMSN | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 3.08 | 0.18 | [ |
MMSN+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.55 | 0.25 | [ |
MMSN | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.4 | N/A | [ |
MMSN+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约4.6 | N/A | [ |
MMSN | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 约2.5 | N/A | [ |
MMSN+CTAC | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 3.68 | N/A | [ |
MMON | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.46 | 0.20 | [ |
MMON+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.78 | 0.22 | [ |
MMON+CTAC+BTES | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.04 | 0.33 | [ |
MMON | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.4 | N/A | [ |
MMON+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.6 | N/A | [ |
MMON+CTAC+BTES | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.6 | N/A | [ |
表1 表面活性剂(模板剂保留法)改性的固态胺吸附剂材料吸脱附性能汇总
载体与模板剂 | 胺组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.23 | NA | [ |
SBA-15+P123 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41 | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.27 | NA | [ |
MCM-41+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 4.80 | NA | [ |
MCM-41+DTAB | 50% TEPA | 纯CO2 | 75 | 100 | He吹扫 | 固定床+气相色谱 | 3.50 | NA | [ |
PE -MCM-41 | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约4.38 | NA | [ |
PE -MCM-41+CTAB | 55% PEI | 纯CO2 | 75 | 75 | N2吹扫 | TGA | 约10.06 | NA | [ |
KIT-1 | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 2.71 | 0.21 | [ |
KIT-1+CTAB | 50% TEPA | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 4.19 | 0.36 | [ |
KIT-1 | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.3 | 约0.18 | [ |
KIT-1+CTAB | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.1 | 约0.27 | [ |
MCM-48 | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.16 | 0.22 | [ |
MCM-48+CTAB | 40% PEI | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.59 | 0.30 | [ |
MCM-48 | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.01 | 0.10 | [ |
MCM-48+CTAB | 40% PEI | 15% CO2/N2 | 50 | 100 | N2吹扫 | 固定床+质谱 | 1.54 | 0.18 | [ |
MMSN | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 3.08 | 0.18 | [ |
MMSN+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.55 | 0.25 | [ |
MMSN | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.4 | N/A | [ |
MMSN+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约4.6 | N/A | [ |
MMSN | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 约2.5 | N/A | [ |
MMSN+CTAC | 50% TEPA | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | TGA | 3.68 | N/A | [ |
MMON | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.46 | 0.20 | [ |
MMON+CTAC | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 2.78 | 0.22 | [ |
MMON+CTAC+BTES | 50% TEPA | 纯CO2 | 25 | 100 | N2吹扫 | TGA | 4.04 | 0.33 | [ |
MMON | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.4 | N/A | [ |
MMON+CTAC | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.6 | N/A | [ |
MMON+CTAC+BTES | 50% TEPA | 15% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.6 | N/A | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MCM-41 | 30% PEI | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.56 | N/A | [ |
30% PEI+20% PEG | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.75 | N/A | [ | |
SBA-15 | 30% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2 | 约0.27 | [ |
30% PEI+10% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.68 | 约0.35 | [ | |
20% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约1.36 | 约0.29 | [ | |
20% PEI+20% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.22 | 约0.43 | [ | |
40% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.27 | 约0.27 | [ | |
SiO2 | 25% TEPA | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.23 | 0.18 | [ |
25% TEPA+25% PEG200 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 2.44 | 0.37 | [ | |
25% TEPA+25% PEG600 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.81 | 0.27 | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ | |
40% TEPA+30% PEG | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.32 | 0.31 | [ | |
SiO2 | TEPA | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 2.09 | N/A | [ |
TEPA+PEG200 | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 1.11 | N/A | [ | |
SiO2 | 40% PEI | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.58 | N/A | [ |
36% PEI+4% PEG200 | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.46 | N/A | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
40% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.81 | 约0.26 | [ | |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20%PEG4000 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.78 | 约0.24 | [ | |
30% TEPA+20% PEG400 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.5 | 约0.34 | [ | |
多孔氧化硅(HPS) | 65% PEI | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 3.93 | N/A | [ |
65% PEI+5% DTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.32 | N/A | [ | |
65% PEI+5% CTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.35 | N/A | [ | |
65% PEI+5% SATB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.59 | N/A | [ | |
65% PEI+ 5% SDBS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.39 | N/A | [ | |
65% PEI+ 5% SDS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.20 | N/A | [ | |
65% PEI+ 5% PC | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.37 | N/A | [ | |
65% PEI+ 5% F127 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.36 | N/A | [ | |
65% PEI+ 5% P123 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.24 | N/A | [ | |
65% PEI+ 5% Span80 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.61 | N/A | [ | |
介孔碳 | 60% PEI | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 3.82 | N/A | [ |
60% PEI+5% DTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% CTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% SATB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.20 | N/A | [ | |
60% PEI+5% SDS | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 4.67 | N/A | [ | |
60% PEI+5% PC | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% Span 80 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% F127 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% X100 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.13 | N/A | [ | |
介孔碳 | 50% PEI(Mn≈10000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约2.39 | N/A | [ |
50% PEI(Mn≈10000)+ 20% PEG(Mn≈6000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约3.07 | N/A | [ | |
树脂 (HP2MGL) | 50% PEI | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.13 | N/A | [ |
50% PEI+5% Span 80 | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.81 | N/A | [ | |
50% PEI+5% CTAB | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.82 | N/A | [ | |
50% PEI+5% PEG | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.64 | N/A | [ | |
50% PEI | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.90 | N/A | [ | |
50% PEI+5% Span 80 | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% CTAB | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% PEG | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.99 | N/A | [ | |
介孔碳 | 55% PEI | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.53 | NA | [ |
55% PEI+ 5% Span 80 | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 3.34 | NA | [ | |
55% PEI | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 约1.5 | NA | [ | |
55% PEI+ 5% Span 80 | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.25 | NA | [ | |
SBA-15 | PEI | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.63 | 0.10 | [ |
PEI+CTAB | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.55 | 0.10 | [ | |
PEI+PEG200 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.73 | 0.10 | [ | |
PEI+PEG1000 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.71 | 0.10 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.74 | 0.17 | [ |
40% TEPA+10% PEG200 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 2.03 | 0.22 | [ | |
40% TEPA+10% P123 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.60 | 0.18 | [ | |
40% TEPA+10% Span80 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.42 | 0.17 | [ | |
40% TEPA+10% SDS | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.52 | 0.17 | [ | |
40% TEPA+10% CTAB | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.39 | 0.15 | [ | |
40% TEPA+10% PC | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.56 | 1.75 | [ | |
SBA-15 | 45% PEI | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.80 | 约0.17 | [ |
45% PEI+5% TEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.90 | 约0.20 | [ | |
45% PEI+5% BEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.70 | NA | [ |
表2 表面活性剂(浸渍法)改性的固态胺吸附剂材料吸脱附性能汇总
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MCM-41 | 30% PEI | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.56 | N/A | [ |
30% PEI+20% PEG | 纯CO2 | 75 | 100 | N2吹扫 | TGA | 1.75 | N/A | [ | |
SBA-15 | 30% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2 | 约0.27 | [ |
30% PEI+10% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.68 | 约0.35 | [ | |
20% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约1.36 | 约0.29 | [ | |
20% PEI+20% PEG200 | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.22 | 约0.43 | [ | |
40% PEI | 纯CO2 | 70 | 100 | N2吹扫 | TGA | 约2.27 | 约0.27 | [ | |
SiO2 | 25% TEPA | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.23 | 0.18 | [ |
25% TEPA+25% PEG200 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 2.44 | 0.37 | [ | |
25% TEPA+25% PEG600 | 纯CO2 | 25 | 100 | 真空 | 固定床 | 1.81 | 0.27 | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ | |
40% TEPA+30% PEG | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.32 | 0.31 | [ | |
SiO2 | TEPA | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 2.09 | N/A | [ |
TEPA+PEG200 | 15% CO2/Ar | 55 | 115 | Ar吹扫 | 固定床+质谱 | 1.11 | N/A | [ | |
SiO2 | 40% PEI | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.58 | N/A | [ |
36% PEI+4% PEG200 | 10% CO2/He | 25 | 95 | He吹扫 | 固定床+质谱 | 1.46 | N/A | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
40% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.81 | 约0.26 | [ | |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20%PEG4000 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.78 | 约0.24 | [ | |
30% TEPA+20% PEG400 | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.5 | 约0.34 | [ | |
多孔氧化硅(HPS) | 65% PEI | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 3.93 | N/A | [ |
65% PEI+5% DTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.32 | N/A | [ | |
65% PEI+5% CTAB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.35 | N/A | [ | |
65% PEI+5% SATB | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.59 | N/A | [ | |
65% PEI+ 5% SDBS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.39 | N/A | [ | |
65% PEI+ 5% SDS | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.20 | N/A | [ | |
65% PEI+ 5% PC | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.37 | N/A | [ | |
65% PEI+ 5% F127 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.36 | N/A | [ | |
65% PEI+ 5% P123 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.24 | N/A | [ | |
65% PEI+ 5% Span80 | 纯CO2 | 75 | 110 | N2吹扫 | TGA | 4.61 | N/A | [ | |
介孔碳 | 60% PEI | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 3.82 | N/A | [ |
60% PEI+5% DTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% CTAB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% SATB | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.20 | N/A | [ | |
60% PEI+5% SDS | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 4.67 | N/A | [ | |
60% PEI+5% PC | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.32 | N/A | [ | |
60% PEI+5% Span 80 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% F127 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.35 | N/A | [ | |
60% PEI+5% X100 | 纯CO2 | 30 | 110 | N2吹扫 | TGA | 约4.13 | N/A | [ | |
介孔碳 | 50% PEI(Mn≈10000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约2.39 | N/A | [ |
50% PEI(Mn≈10000)+ 20% PEG(Mn≈6000) | 15% CO2/ N2 | 75 | 110 | N2吹扫 | TGA | 约3.07 | N/A | [ | |
树脂 (HP2MGL) | 50% PEI | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.13 | N/A | [ |
50% PEI+5% Span 80 | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.81 | N/A | [ | |
50% PEI+5% CTAB | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.82 | N/A | [ | |
50% PEI+5% PEG | 0.5% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.64 | N/A | [ | |
50% PEI | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.90 | N/A | [ | |
50% PEI+5% Span 80 | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% CTAB | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约2.08 | N/A | [ | |
50% PEI+5% PEG | 0.04% CO2/N2 | 25 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.99 | N/A | [ | |
介孔碳 | 55% PEI | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.53 | NA | [ |
55% PEI+ 5% Span 80 | 0.5% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 3.34 | NA | [ | |
55% PEI | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 约1.5 | NA | [ | |
55% PEI+ 5% Span 80 | 0.04% CO2/N2 | 25 | 110 | N2吹扫 | 固定床+气相色谱 | 2.25 | NA | [ | |
SBA-15 | PEI | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.63 | 0.10 | [ |
PEI+CTAB | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.55 | 0.10 | [ | |
PEI+PEG200 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.73 | 0.10 | [ | |
PEI+PEG1000 | 0.04% CO2/He | 30 | 110 | He吹扫 | TGA | 0.71 | 0.10 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.74 | 0.17 | [ |
40% TEPA+10% PEG200 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 2.03 | 0.22 | [ | |
40% TEPA+10% P123 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.60 | 0.18 | [ | |
40% TEPA+10% Span80 | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.42 | 0.17 | [ | |
40% TEPA+10% SDS | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.52 | 0.17 | [ | |
40% TEPA+10% CTAB | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.39 | 0.15 | [ | |
40% TEPA+10% PC | 0.04% CO2/N2 | 25 | 80 | N2吹扫 | TGA | 1.56 | 1.75 | [ | |
SBA-15 | 45% PEI | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.80 | 约0.17 | [ |
45% PEI+5% TEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.90 | 约0.20 | [ | |
45% PEI+5% BEP | 9.5% CO2/ N2 | 75 | 105 | N2吹扫 | 固定床+CO2分析仪 | 约1.70 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率(CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.23 | 约0.8 | [ |
30% TEPA+20% DEA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.70 | 约0.93 | [ | |
MSU-F | 40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ |
70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ | |
70% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.38 | 0.51 | [ | |
40% TEPA+30% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.62 | 0.42 | [ | |
40% TEPA+30% DEAP | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.13 | 0.41 | [ | |
40% TEPA+30% MEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.64 | 0.24 | [ | |
40% TEPA+30% TEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.89 | 0.39 | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20% MEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.74 | 约0.25 | [ | |
30% TEPA+20% DEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.75 | 约0.39 | [ | |
30% TEPA+20% TEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.25 | 约0.36 | [ | |
30% TEPA+20% AMP | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.58 | 约0.26 | [ | |
30%TEPA+20%AEEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.89 | 约0.25 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2 | 25 | 80 | N/A | TGA | 1.74 | 0.18 | [ |
40% TEPA+10% DEA | 0.04% CO2 | 25 | 80 | N/A | TGA | 2.24 | 0.22 | [ | |
SBA-15 | 50% PEI | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.11 | 0.1 | [ |
25% PEI+25% DEA | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.62 | 0.2 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% TEPA+30% AMP | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.01 | NA | [ |
表3 烷醇胺添加剂(浸渍法引入)改性的固态胺吸附剂材料吸脱附性能汇总
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率(CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
SBA-15 | 50% TEPA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.23 | 约0.8 | [ |
30% TEPA+20% DEA | 99.999% CO2 | 75 | 100 | N/A | 固定床+气相色谱 | 3.70 | 约0.93 | [ | |
MSU-F | 40% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.13 | 0.30 | [ |
70% TEPA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ | |
70% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.38 | 0.51 | [ | |
40% TEPA+30% DEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.62 | 0.42 | [ | |
40% TEPA+30% DEAP | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 5.13 | 0.41 | [ | |
40% TEPA+30% MEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 3.64 | 0.24 | [ | |
40% TEPA+30% TEA | 100kPa CO2 | 40 | N/A | 真空脱附 | CO2吸附等温线 | 4.89 | 0.39 | [ | |
多孔SiO2 | 30% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.89 | 约0.25 | [ |
50% TEPA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 1.42 | 约0.11 | [ | |
30% TEPA+20% MEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.74 | 约0.25 | [ | |
30% TEPA+20% DEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.75 | 约0.39 | [ | |
30% TEPA+20% TEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 3.25 | 约0.36 | [ | |
30% TEPA+20% AMP | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.58 | 约0.26 | [ | |
30%TEPA+20%AEEA | 2% CO2/Ar | 25 | 80 | Ar吹扫 | 固定床+气相色谱 | 2.89 | 约0.25 | [ | |
SBA-15 | 40% TEPA | 0.04% CO2 | 25 | 80 | N/A | TGA | 1.74 | 0.18 | [ |
40% TEPA+10% DEA | 0.04% CO2 | 25 | 80 | N/A | TGA | 2.24 | 0.22 | [ | |
SBA-15 | 50% PEI | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.11 | 0.1 | [ |
25% PEI+25% DEA | 0.04% CO2 | 25 | 90 | N/A | TGA | 1.62 | 0.2 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% TEPA+30% AMP | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.01 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
多孔氧化硅 | 50% PEI | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.36 | 0.22 | [ |
50% PEI+APTES | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.26 | 0.21 | [ | |
氧化硅 | 50% PEI | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 3.2 | 0.29 | [ |
35% PEI+15% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.9 | 0.33 | [ | |
25% PEI+25% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.8 | 0.37 | [ | |
15% PEI+35% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.2 | 0.37 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% APTMS | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.12 | [ | |
氧化硅 | 40% PEI800 | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.45 | [ |
12% PEI800+28% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.1 | 0.46 | [ | |
20% PEI800+20% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.5 | 0.5 | [ | |
28% PEI800+12% TMPED | 85%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.5 | [ | |
40% PEI2000 | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.7 | N/A | [ | |
20% PEI2000+20% TMPED | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.4 | N/A | [ | |
孔增大SBA-15 | 30% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.16 | 0.32 | [ |
30% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.16 | 0.40 | [ | |
30% (TEPA+DT) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.89 | 0.42 | [ | |
50% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.73 | 0.37 | [ | |
50% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 4.89 | 0.45 | [ | |
30% PEI | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 1.83 | 0.28 | [ | |
30% (PEI+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.53 | 0.33 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% APTES+40% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.45 | NA | [ |
表4 氨基硅烷类添加剂改性的固态胺吸附剂材料吸脱附性能汇总
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
多孔氧化硅 | 50% PEI | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.36 | 0.22 | [ |
50% PEI+APTES | 0.04% CO2/Ar | 25 | 110 | Ar吹扫 | TGA | 2.26 | 0.21 | [ | |
氧化硅 | 50% PEI | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 3.2 | 0.29 | [ |
35% PEI+15% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.9 | 0.33 | [ | |
25% PEI+25% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.8 | 0.37 | [ | |
15% PEI+35% APTES | 10% CO2/He | 60 | 105 | He吹扫 | 固定床+质谱 | 2.2 | 0.37 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% APTMS | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.12 | [ | |
氧化硅 | 40% PEI800 | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.45 | [ |
12% PEI800+28% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.1 | 0.46 | [ | |
20% PEI800+20% TMPED | 85% CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.5 | 0.5 | [ | |
28% PEI800+12% TMPED | 85%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.81 | 0.5 | [ | |
40% PEI2000 | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.7 | N/A | [ | |
20% PEI2000+20% TMPED | 83%CO2/N2 | 40 | 105 | N2吹扫 | TGA | 2.4 | N/A | [ | |
孔增大SBA-15 | 30% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.16 | 0.32 | [ |
30% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.16 | 0.40 | [ | |
30% (TEPA+DT) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.89 | 0.42 | [ | |
50% TEPA | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 3.73 | 0.37 | [ | |
50% (TEPA+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 4.89 | 0.45 | [ | |
30% PEI | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 1.83 | 0.28 | [ | |
30% (PEI+APTMS) | 100kPa CO2 | 45 | N/A | N/A | 等温吸附线 | 2.53 | 0.33 | [ | |
MCM-41 | 60% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 2.45 | NA | [ |
30% APTES+40% TEPA | 15% CO2/N2 | 70 | 100 | N2吹扫 | 固定床+气相色谱 | 3.45 | NA | [ |
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA+30% PZ | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.61 | NA | [ | |
40% TEPA+30% DBU | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.73 | NA | [ | |
40% TEPA+30% PEI | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.50 | NA | [ | |
硅胶 | 45% PEI | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.80 | NA | [ |
45% PEI+5% PZ | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.18 | NA | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.24 | [ |
40% TEPA+30% 4MIm | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.88 | 0.46 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% DETA | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.11 | [ |
表5 其他胺类添加剂(浸渍法引入)改性的固态胺吸附剂材料吸脱附性能汇总
载体 | 胺与添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.23 | [ |
40% TEPA+30% PZ | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.61 | NA | [ | |
40% TEPA+30% DBU | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.73 | NA | [ | |
40% TEPA+30% PEI | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 3.50 | NA | [ | |
硅胶 | 45% PEI | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约2.80 | NA | [ |
45% PEI+5% PZ | 10% CO2/N2 | 75 | 100 | N2吹扫 | TGA | 约3.18 | NA | [ | |
MSU-F | 70% TEPA | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.17 | 0.24 | [ |
40% TEPA+30% 4MIm | 100kPa CO2 | 40 | NA | 真空脱附 | CO2吸附等温线 | 4.88 | 0.46 | [ | |
MCF | 70% PEI | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约0.8 | 约0.06 | [ |
50% PEI+20% DETA | 纯CO2 | 30 | 100 | N2吹扫 | 固定床+气相色谱 | 约1.3 | 0.11 | [ |
载体 | 胺+添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附 方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
气相氧化硅 | 40% PEI | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.38 | 约0.26 | [ |
40% PEI+ 6% K2CO3 | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.64 | 约0.28 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.07 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/ N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.36 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
SBA-15 | 50% TEPA | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 4.81 | 0.36 | [ |
+4.5% NaNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.28 | NA | [ | |
+4.5% KNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.24 | NA | [ | |
+4.5% Zr(NO3)4 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.10 | NA | [ | |
+4.5% Al(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.9 | NA | [ | |
+4.5% Ca(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ | |
+4.5% Mg(NO3)2 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ |
表6 无机物类添加剂改性的固态胺吸附剂材料吸脱附性能汇总
载体 | 胺+添加剂组分 | 吸附气体氛围 | 吸附温度 /℃ | 脱附温度 /℃ | 脱附 方式 | 测定方法 | CO2吸附量 /mmol·g-1 | 胺效率 (CO2/N) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
气相氧化硅 | 40% PEI | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.38 | 约0.26 | [ |
40% PEI+ 6% K2CO3 | 15% CO2/He | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.64 | 约0.28 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.07 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/ N2 | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
40% PEI | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.36 | 约0.26 | [ | |
40% PEI+ 6% K2CO3 | 15% CO2, 4.5% O2/N2+3% H2O | 75 | 120 | He吹扫 | 固定床+气相色谱 | 2.75 | 约0.30 | [ | |
SBA-15 | 50% TEPA | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 4.81 | 0.36 | [ |
+4.5% NaNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.28 | NA | [ | |
+4.5% KNO3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.24 | NA | [ | |
+4.5% Zr(NO3)4 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 6.10 | NA | [ | |
+4.5% Al(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.9 | NA | [ | |
+4.5% Ca(NO3)3 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ | |
+4.5% Mg(NO3)2 | 0.044% CO2/Air (50% RH) | 30 | 90 | N2吹扫 | 固定床+ CO2分析仪 | 约4.0 | NA | [ |
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失81% | [ |
50% (0.15 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失44% | [ | |
50% (0.37 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失20% | [ | |
50% (0.54 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失19% | [ | |
二氧化硅微球 | 50% PEI (MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50% (0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
氧化硅 (Sipernat 50S) | 50% TEPA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ |
TEPA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ | |
50% PEHA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ | |
PEHA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ |
表7 环氧化物对固态胺吸附剂热化学稳定性的影响汇总
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失81% | [ |
50% (0.15 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失44% | [ | |
50% (0.37 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失20% | [ | |
50% (0.54 EB+PEI) | 20% O2/N2,120℃,24h | 15% CO2,3% H2O,2% Ar/N2,40˚C,30min | 100% CO2,120˚C,60min | 吸附量损失19% | [ | |
二氧化硅微球 | 50% PEI (MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50% (0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
氧化硅 (Sipernat 50S) | 50% TEPA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ |
TEPA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ | |
50% PEHA | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量损失约90% | [ | |
PEHA-PO-1-2 (39% TEPA+22% PO) | 21% O2/N2,100℃,20h | 95% CO2/N2,25/55/85℃,3h | N2,110℃,30min | 吸附量分别损失16%(55℃),18%(85℃) | [ |
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性 评价 | 参考 文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
2% Na3PO4+50% PEI | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约4% | [ | |
50% PEI(MW≈1200) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约100% | [ | |
50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,and 10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50% PEI | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约8.5% | [ | |
二氧化硅微球 | 0.2mmol/g TEAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约1% | [ |
0.2mmol/g TMAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约2% | [ | |
0.2mmol/g NaH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
0.2mmol/g LiH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约15% | [ | |
0.2mmol/g TEAH2PO4+50% (EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约14% | [ |
表8 螯合剂对固态胺吸附剂热化学稳定性的影响汇总
载体 | 胺+添加剂组分 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性 评价 | 参考 文献 |
---|---|---|---|---|---|---|
二氧化硅微球 | 50% PEI(MW≈1200) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失52% | [ |
50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失23% | [ | |
2% Na3PO4+50% PEI | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 3% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约4% | [ | |
50% PEI(MW≈1200) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约100% | [ | |
50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,and 10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50% PEI | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约80% | [ | |
2% Na3PO4+50%(0.37 EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约8.5% | [ | |
二氧化硅微球 | 0.2mmol/g TEAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约1% | [ |
0.2mmol/g TMAH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约2% | [ | |
0.2mmol/g NaH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约10% | [ | |
0.2mmol/g LiH2PO4+50%(EB+PEI) | 20% O2/N2,110℃,24h | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约15% | [ | |
0.2mmol/g TEAH2PO4+50% (EB+PEI) | 模拟烟气(15% CO2,3% O2,10% H2O/N2),110℃,30d | 15% CO2,10% H2O,75% N2,60℃,30min | 100% CO2,110℃,30min | 吸附量损失约14% | [ |
载体 | 胺 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考 文献 |
---|---|---|---|---|---|---|
MSU-F | 30% TEPA | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为54%(18h),79%(42h) | [ |
30% TEPA+5% TDE | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约18%(18h),60%(42h) | [ | |
30% TEPA+5% HEDS | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约30%(18h),70%(42h) | [ | |
30% TEPA+5% DTDP | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约25%(18h),60%(42h) | [ | |
MSU-F | 30% PEI (Mn≈1200) | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近60% | [ |
30% PEI+5% TDE | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近40% | [ | |
30% PEI+5% HEDS | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近30% | [ | |
30% PEI+5% DTDP | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近25% | [ |
表9 含硫化合物添加剂对固态胺吸附剂热化学稳定性的影响汇总
载体 | 胺 | 氧化条件 | 吸附条件 | 脱附条件 | 氧化稳定性评价 | 参考 文献 |
---|---|---|---|---|---|---|
MSU-F | 30% TEPA | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为54%(18h),79%(42h) | [ |
30% TEPA+5% TDE | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约18%(18h),60%(42h) | [ | |
30% TEPA+5% HEDS | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约30%(18h),70%(42h) | [ | |
30% TEPA+5% DTDP | 100% O2,80℃,18~42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失分别为约25%(18h),60%(42h) | [ | |
MSU-F | 30% PEI (Mn≈1200) | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近60% | [ |
30% PEI+5% TDE | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近40% | [ | |
30% PEI+5% HEDS | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近30% | [ | |
30% PEI+5% DTDP | 100% O2,80℃,42h | 100kPa CO2,40℃ | 40℃,真空,6h | 吸附量损失近25% | [ |
1 | International Energy Agency. Net zero by 2050—A roadmap for the global energy sector[R]. Paris, IEA, 2021. |
2 | 张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京, 中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学, 2023. |
ZHANG Xian, YANG Xiaoliang, Lu Xi, et al. CCUS progress in China—A status report (2023)[R]. Beijing, The Administrative Center for China’s Agenda 21, Global CCS Institute, Tsinghua University, 2023. | |
3 | 张贤, 李凯, 马乔,等. 碳中和目标下CCUS技术发展定位与展望[J]. 中国人口·资源与环境, 2021, 31(9): 29-33. |
ZHANG Xian, LI Kai, MA Qiao, et al. Orientation and prospect of CCUS development under carbon neutrality target[J]. China Population, Resources and Environment, 2021, 31(9): 29-33. | |
4 | CUI Qingru, ZHAO Rui, WANG Tiankun, et al. A 150000t·a-1 post-combustion carbon capture and storage demonstration project for coal-fired power plants[J]. Engineering, 2022, 14: 22-26. |
5 | Mai BUI, ADJIMAN Claire S, BARDOW André, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
6 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
7 | KIM Chaehoon, Yejee HA, CHOI Minkee. Design of amine-containing nanoporous materials for postcombustion CO2 capture from engineering perspectives[J]. Accounts of Chemical Research, 2023, 56(21): 2887-2897 |
8 | SHI Xiaoyang, XIAO Hang, AZARABADI Habib, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angewandte Chemie (International Ed in English), 2020, 59(18): 6984-7006. |
9 | 廖昌建, 张可伟, 王晶,等. 直接空气捕集二氧化碳技术研究进展[J]. 化工进展, 2023: 1-19. |
LIAO Changjian, ZHANG Kewei, WANG Jing, et al. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2023: 1-19. | |
10 | ZHU Xuancan, XIE Wenwen, WU Junye, et al. Recent advances in direct air capture by adsorption[J]. Chemical Society Reviews, 2022, 51(15): 6574-6651. |
11 | 朱炫灿, 葛天舒, 吴俊晔,等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021, 66(22): 2861-2877. |
ZHU Xuancan, GE Tianshu, WU Junye, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021, 66(22): 2861-2877. | |
12 | 宋珂琛,崔希利,邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162. |
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162. | |
13 | DIDAS Stephanie A, CHOI Sunho, CHAIKITTISILP Watcharop, et al. Amine-oxide hybrid materials for CO2 capture from ambient air[J]. Accounts of Chemical Research, 2015, 48(10): 2680-2687. |
14 | 王一茹, 宋小三, 水博阳,等. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
WANG Yiru, SONG Xiaosan, SHUI Boyang, et al. Progress in amine-functionalized mesoporous silica for CO2 capture[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 536-544. | |
15 | KUMAR Dharam Raj, ROSU Cornelia, SUJAN Achintya R, et al. Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture[J]. ACS Sustainable Chemistry & Engineering, 2020: acssuschemeng.0c03706. |
16 | SUJAN Achintya R, KUMAR Dharam Raj, Miles SAKWA-NOVAK, et al. Poly(glycidyl amine)-loaded SBA-15 sorbents for CO2 capture from dilute and ultradilute gas mixtures[J]. ACS Applied Polymer Materials, 2019, 1(11): 3137-3147. |
17 | SANZ-PÉREZ Eloy S, MURDOCK Christopher R, DIDAS Stephanie A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876. |
18 | SRIKANTH Chakravartula S, CHUANG Steven S C. Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture[J]. ChemSusChem, 2012, 5(8): 1435-1442. |
19 | YUE M B, CHUN Y, CAO Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template[J]. Advanced Functional Materials, 2006, 16(13): 1717-1722. |
20 | ZHANG Guojie, ZHAO Peiyu, HAO Lanxia, et al. Amine-modified SBA-15(P): A promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24: 22-33. |
21 | YUE Mingbo, SUN Linbing, CAO Yi, et al. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine[J]. Chemistry: A European Journal, 2008, 14(11): 3442-3451. |
22 | Aliakbar HEYDARI-GORJI, BELMABKHOUT Youssef, SAYARI Abdelhamid. Polyethylenimine-impregnated mesoporous silica: Effect of amine loading and surface alkyl chains on CO2 adsorption[J]. Langmuir, 2011, 27(20): 12411-12416. |
23 | HAN Yu, BAI Gaozhi, YANG Junhao, et al. Facile improvement of amine dispersion in KIT-1 with the alkyl chains template for enhanced CO2 adsorption capacity[J]. Journal of Solid State Chemistry, 2020, 290: 121531. |
24 | QIAN Xingchi, YANG Junhao, FEI Zhaoyang, et al. A simple strategy to improve PEI dispersion on MCM-48 with long-alkyl chains template for efficient CO2 adsorption[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10975-10983. |
25 | QI Luming, HAN Yu, BAI Gaozhi, et al. Role of brush-like additives in CO2 adsorbents for the enhancement of amine efficiency[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106709. |
26 | QI Luming, YANG Wanyong, ZHANG Linlin, et al. Reinforced CO2 capture on amine-impregnated organosilica with double brush-like additives modified[J]. Industrial & Engineering Chemistry Research, 2022, 61(40): 14859-14867. |
27 | XU Xiaochun, SONG Chunshan, ANDRÉSEN John M, et al. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous and Mesoporous Materials, 2003, 62(1/2): 29-45. |
28 | ZHANG Lin, WANG Xiaoxing, FUJII Mamoru, et al. CO2 capture over molecular basket sorbents: Effects of SiO2 supports and PEG additive[J]. Journal of Energy Chemistry, 2017, 26(5): 1030-1038. |
29 | TANTHANA Jak, CHUANG Steven S C. In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture[J]. ChemSusChem, 2010, 3(8): 957-964. |
30 | MILLER Duane D, CHUANG Steven S C. Control of CO2 adsorption and desorption using polyethylene glycol in a tetraethylenepentamine thin film: An in situ ATR and theoretical study[J]. The Journal of Physical Chemistry C, 2016, 120(44): 25489-25504. |
31 | WANG Linxi, Mohammed AL-AUFI, PACHECO Carlos N, et al. Polyethylene glycol (PEG) addition to polyethylenimine (PEI)-impregnated silica increases amine accessibility during CO2 sorption[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14785-14795. |
32 | WANG Jitong, LONG Donghui, ZHOU Huanhuan, et al. Surfactant promoted solid amine sorbents for CO2 capture[J]. Energy & Environmental Science, 2012, 5(2): 5742-5749. |
33 | WANG Jitong, WANG Mei, ZHAO Beibei, et al. Mesoporous carbon-supported solid amine sorbents for low-temperature carbon dioxide capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(15): 5437-5444. |
34 | WANG Jitong, HUANG Haihong, WANG Mei, et al. Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5319-5327. |
35 | WANG Jitong, WANG Mei, LI Wencheng, et al. Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2 [J]. AIChE Journal, 2015, 61(3): 972-980. |
36 | WANG Mei, YAO Liwen, WANG Jitong, et al. Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture[J]. Applied Energy, 2016, 168: 282-290. |
37 | SAKWA-NOVAK Miles A, TAN Shuai, JONES Christopher W. Role of additives in composite PEI/oxide CO₂ adsorbents: Enhancement in the amine efficiency of supported PEI by PEG in CO₂ capture from simulated ambient air[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24748-24759. |
38 | WANG Yaozu, MIAO Yihe, GE Bingyao, et al. Additives enhancing supported amines performance in CO2 capture from air[J]. SusMat, 2023, 3: 416-430. |
39 | CHENG Dandan, LIU Yue, WANG Haiqiang, et al. Enhanced CO2 adsorptive performance of PEI/SBA-15 adsorbent using phosphate ester based surfactants as additives[J]. Journal of Environmental Sciences (China), 2015, 38: 1-7. |
40 | Duc Sy DAO, YAMADA Hidetaka, YOGO Katsunori. Large-pore mesostructured silica impregnated with blended amines for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(38): 13810-13817. |
41 | ZHAO Yuan, ZHU Yidi, ZHU Tianle, et al. Enhanced CO2 adsorption over silica-supported tetraethylenepentamine sorbents doped with alkanolamines or alcohols[J]. Industrial & Engineering Chemistry Research, 2019, 58(1): 156-164. |
42 | GOEPPERT Alain, METH Sergio, SURYA PRAKASH G K, et al. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents[J]. Energy & Environmental Science, 2010, 3(12): 1949-1960. |
43 | ZHU Jiangyun, BAKER Sheila N. Lewis base polymers for modifying sorption and regeneration abilities of amine-based carbon dioxide capture materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(12): 2666-2674. |
44 | YUE Mingbo, SUN Linbing, CAO Yi, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 74-81. |
45 | Duc Sy DAO, YAMADA Hidetaka, YOGO Katsunori. Response surface optimization of impregnation of blended amines into mesoporous silica for high-performance CO2 capture[J]. Energy & Fuels, 2015, 29(2): 985-992. |
46 | Duc Sy DAO, YAMADA Hidetaka, YOGO Katsunori. Enhancement of CO2 adsorption/desorption properties of solid sorbents using tetraethylenepentamine/diethanolamine blends[J]. ACS Omega, 2020, 5(37): 23533-23541. |
47 | HE Zhijun, WANG Yaozu, MIAO Yihe, et al. Mixed polyamines promotes CO2 adsorption from air[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107239. |
48 | MIAO Yihe, WANG Yaozu, GE Bingyao, et al. Mixed diethanolamine and polyethyleneimine with enhanced CO2 capture capacity from air[J]. Advanced Science, 2023, 10(16): e2207253. |
49 | WANG Xia, GUO Qingjie, ZHAO Jun, et al. Mixed amine-modified MCM-41 sorbents for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 37: 90-98. |
50 | CHOI Sunho, GRAY McMahan L, JONES Christopher W. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air[J]. ChemSusChem, 2011, 4(5): 628-635. |
51 | FAUTH D J, GRAY M L, PENNLINE H W, et al. Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture[J]. Energy & Fuels, 2012, 26(4): 2483-2496. |
52 | MA Juanjuan, LIU Qiming, CHEN Dandan, et al. Carbon dioxide adsorption using amine-functionalized mesocellular siliceous foams[J]. Journal of Materials Science, 2014, 49(21): 7585-7596. |
53 | WILFONG Walter Christopher, KAIL Brian W, GRAY McMahan L. Rapid screening of immobilized amine CO2 sorbents for steam stability by their direct contact with liquid H2O[J]. ChemSusChem, 2015, 8(12): 2041-2045. |
54 | WILFONG Walter Christopher, KAIL Brian W, JONES Christopher W, et al. Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: A new class 4 category[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12780-12791. |
55 | SANZ Raúl, CALLEJA Guillermo, ARENCIBIA Amaya, et al. Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation[J]. Journal of Materials Chemistry A, 2013, 1(6): 1956-1962. |
56 | WANG Xia, CHEN Linlin, GUO Qingjie. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture[J]. Chemical Engineering Journal, 2015, 260: 573-581. |
57 | ZHANG Zhonghua, WANG Baodong, SUN Qi, et al. Enhancing sorption performance of solid amine sorbents for CO2 capture by additives[J]. Energy Procedia, 2013, 37: 205-210. |
58 | ZHANG Xiaoyun, ZHENG Xiuxin, ZHANG Sisi, et al. AM-TEPA impregnated disordered mesoporous silica as CO2 capture adsorbent for balanced adsorption-desorption properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15163-15169. |
59 | Quyen T VU, YAMADA Hidetaka, YOGO Katsunori. Exploring the role of imidazoles in amine-impregnated mesoporous silica for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2638-2644. |
60 | WANG Xiaoxing, SONG Chunshan. New strategy to enhance CO2 capture over a nanoporous polyethylenimine sorbent[J]. Energy & Fuels, 2014, 28(12): 7742-7745. |
61 | WANG Heng, YANG Zuoyan, ZHOU Yuqi, et al. Direct air capture of CO2 with metal nitrate-doped, tetraethylenepentamine-functionalized SBA-15 adsorbents[J]. Industrial & Engineering Chemistry Research, 2023, 62(41): 16579-16588. |
62 | LIU Fujian, HUANG Kuan, JIANG Lilong. Promoted adsorption of CO2 on amine-impregnated adsorbents by functionalized ionic liquids[J]. AIChE Journal, 2018, 64(10): 3671-3680. |
63 | YU Qian, DE LA P DELGADO Jorge, VENEMAN Rens, et al. Stability of a benzyl amine based CO2 capture adsorbent in view of regeneration strategies[J]. Industrial & Engineering Chemistry Research, 2017, 56(12): 3259-3269. |
64 | MIAO Yihe, WANG Yaozu, ZHU Xuancan, et al. Minimizing the effect of oxygen on supported polyamine for direct air capture[J]. Separation and Purification Technology, 2022, 298, 121583. |
65 | BALI Sumit, CHEN Thomas T, CHAIKITTISILP Watcharop, et al. Oxidative stability of amino polymer-alumina hybrid adsorbents for carbon dioxide capture[J]. Energy & Fuels, 2013, 27(3): 1547-1554. |
66 | PANG Simon H, LIVELY Ryan P, JONES Christopher W. Oxidatively-stable linear poly(propylenimine)-containing adsorbents for CO2 capture from ultradilute streams[J]. ChemSusChem, 2018, 11(15): 2628-2637. |
67 | SARAZEN Michele L, SAKWA-NOVAK Miles A, PING Eric W, et al. Effect of different acid initiators on branched poly(propylenimine) synthesis and CO2 sorption performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7338-7345. |
68 | SAYARI Abdelhamid, LIU Qing, MISHRA Prashant. Enhanced adsorption efficiency through materials design for direct air capture over supported polyethylenimine[J]. ChemSusChem, 2016, 9(19): 2796-2803. |
69 | CHOI Woosung, MIN Kyungmin, KIM Chaehoon, et al. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption[J]. Nature Communications, 2016, 7: 12640. |
70 | MIN Kyungmin, CHOI Woosung, KIM Chaehoon, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture[J]. Nature Communications, 2018, 9(1): 726. |
71 | PARK Sunghyun, CHOI Keunsu, YU Hyun Jung, et al. Thermal stability enhanced tetraethylenepentamine/silica adsorbents for high performance CO2 capture[J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4632-4639. |
72 | GOEPPERT Alain, ZHANG Hang, Raktim SEN, et al. Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO2 capture from various sources including air[J]. ChemSusChem, 2019, 12(8): 1712-1723. |
73 | GUO Mengzhi, LIANG Shengke, LIU Junteng, et al. Epoxide-functionalization of grafted tetraethylenepentamine on the framework of an acrylate copolymer as a CO2 sorbent with long cycle stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3853-3864. |
74 | CHOI Woosung, PARK Jongbeom, CHOI Minkee. Cation effects of phosphate additives for enhancing the oxidative stability of amine-containing CO2 adsorbents[J]. Industrial & Engineering Chemistry Research, 2021, 60(17): 6147-6152. |
75 | Quyen T VU, YAMADA Hidetaka, YOGO Katsunori. Inhibitors of oxidative degradation of polyamine-modified silica sorbents for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15598-15605. |
76 | Aliakbar HEYDARI-GORJI, BELMABKHOUT Youssef, SAYARI Abdelhamid. Degradation of amine-supported CO2 adsorbents in the presence of oxygen-containing gases[J]. Microporous and Mesoporous Materials, 2011, 145(1/2/3): 146-149. |
77 | MIAO Yihe, HE Zhijun, ZHU Xuancan, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica[J]. Chemical Engineering Journal, 2021, 426: 131875. |
[1] | 高凡翔, 刘阳, 张贵泉, 秦锋, 姚建涛, 金辉, 师进文. 燃煤烟气湿法协同脱硫脱碳技术研究进展[J]. 化工进展, 2024, 43(5): 2324-2342. |
[2] | 李思, 陶艺月, 肖振翀, 张亮, 李俊, 朱恂, 廖强. 热再生电池堆-二氧化碳电化学还原池系统耦合特性[J]. 化工进展, 2024, 43(5): 2568-2575. |
[3] | 张金鹏, 屈婷, 荆洁颖, 李文英. 吸附强化水气变换制氢复合催化剂研究进展[J]. 化工进展, 2024, 43(5): 2629-2644. |
[4] | 李凯, 魏鹤琳, 左夏华, 杨卫民, 阎华, 安瑛. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024, 43(4): 1944-1952. |
[5] | 齐亚兵, 吴子波, 杨清翠. Pickering乳液制备及稳定性研究进展[J]. 化工进展, 2024, 43(4): 2017-2030. |
[6] | 孙伟吉, 刘浪, 方治余, 朱梦博, 解耿, 何伟, 高宇恒. 改性镁渣的湿法碳酸化工艺[J]. 化工进展, 2024, 43(4): 2161-2173. |
[7] | 刘涵, 曲明璐, 叶振东, 杨帆, 黄蓓佳, 张亚宁, 刘洪芝. 钙镁二元盐复合材料的储热性能[J]. 化工进展, 2024, 43(4): 1764-1773. |
[8] | 卢志强, 石雨, 陈鹏宇, 张亮, 李俊, 付乾, 朱恂, 廖强. 具有高浓度氨腔室的立式热再生氨电池性能特性[J]. 化工进展, 2024, 43(3): 1224-1231. |
[9] | 徐泽文, 王明, 王强, 侯影飞. 胺基材料在二氧化碳分离膜领域研究进展[J]. 化工进展, 2024, 43(3): 1374-1386. |
[10] | 刘泽鹏, 曾纪珺, 唐晓博, 赵波, 韩升, 廖袁淏, 张伟. 四种烷基咪唑磷酸酯离子液体的热力学性质[J]. 化工进展, 2024, 43(3): 1484-1491. |
[11] | 董晓涵, 田月, 苏毅. 含钛高炉渣制备复合吸附剂及其铬吸附性能[J]. 化工进展, 2024, 43(3): 1552-1564. |
[12] | 禹言芳, 石博文, 孟辉波, 丁鹏程, 姚云娟. 基于CFD-DEM算法的气力输送气固两相流特性分析[J]. 化工进展, 2024, 43(3): 1133-1144. |
[13] | 禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
[14] | 黄梦, 孙志高, 徐文超, 张焕然, 杨扬. 内酯型槐糖脂促进HCFC-141b水合物生成[J]. 化工进展, 2024, 43(3): 1199-1205. |
[15] | 孙宏军, 李腾, 李金霞, 丁红兵. 基于Kelvin-Helmholtz不稳定性和界面剪切作用的扰动波高预测模型[J]. 化工进展, 2024, 43(2): 609-618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |