化工进展 ›› 2024, Vol. 43 ›› Issue (4): 2161-2173.DOI: 10.16085/j.issn.1000-6613.2023-0660
• 资源与环境化工 • 上一篇
孙伟吉1,2(), 刘浪1,2(), 方治余1,2, 朱梦博1,2, 解耿1,2, 何伟1,2, 高宇恒1,2
收稿日期:
2023-04-23
修回日期:
2023-09-01
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
刘浪
作者简介:
孙伟吉(1994—),男,博士研究生,研究方向为采空区CO2封存。E-mail:sunweji0825@163.com。
基金资助:
SUN Weiji1,2(), LIU Lang1,2(), FANG Zhiyu1,2, ZHU Mengbo1,2, XIE Geng1,2, HE Wei1,2, GAO Yuheng1,2
Received:
2023-04-23
Revised:
2023-09-01
Online:
2024-04-15
Published:
2024-05-13
Contact:
LIU Lang
摘要:
碱基工业固废的碳酸化反应是一种矿化吸收CO2并减少温室气体排放的固碳策略之一。本研究首次引入湿法碳酸化工艺,通过借助X射线衍射、红外光谱测试、热重分析等实验测试,重点探究了温度变化、搅拌速度、碳酸化时间和液固比例对改性镁渣碳酸化反应的影响,进而讨论了4种因素下改性镁渣的碳酸化产物与固碳效率。结果表明,改性镁渣的矿物成分主要以β-C2S为主,是一种具有良好储存CO2能力的工业固废,碳酸化产物主要以方解石型碳酸钙晶体和二氧化硅凝胶为主。碳酸化反应后,改性镁渣碳酸化产物的粒径显著增大,比表面积减小,粒径分布变均匀,粒径分布范围变窄。当碳酸化反应温度为60℃、通气时间为30min、液固比为10mL/g、搅拌速度为600r/min时,改性镁渣的固碳效率达到最大(28.4%),即1kg改性镁渣可以矿化吸收0.284kg CO2。因此,湿法碳酸化工艺对改性镁渣的回收利用及CO2捕集均具有很大的应用潜力。
中图分类号:
孙伟吉, 刘浪, 方治余, 朱梦博, 解耿, 何伟, 高宇恒. 改性镁渣的湿法碳酸化工艺[J]. 化工进展, 2024, 43(4): 2161-2173.
SUN Weiji, LIU Lang, FANG Zhiyu, ZHU Mengbo, XIE Geng, HE Wei, GAO Yuheng. Technique of wet carbonation of modified magnesium slag[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2161-2173.
化学成分 | MMS/% |
---|---|
SiO2 | 19.21 |
Al2O3 | 0.82 |
CaO | 41.18 |
MgO | 3.78 |
Fe2O3 | 2.59 |
SO3 | 0.02 |
P2O5 | <0.01 |
MnO | <0.01 |
表1 MMS的化学组成 (质量分数)
化学成分 | MMS/% |
---|---|
SiO2 | 19.21 |
Al2O3 | 0.82 |
CaO | 41.18 |
MgO | 3.78 |
Fe2O3 | 2.59 |
SO3 | 0.02 |
P2O5 | <0.01 |
MnO | <0.01 |
实验编号 | 转子速度 /r·min-1 | 温度 /℃ | 通气时间 /min | 液固比 /mL·g-1 | 通气速率 /L·min-1 |
---|---|---|---|---|---|
0(对照组) | 300 | 20 | 30 | 10 | 0 |
1 | 300 | 20 | 30 | 10 | 1 |
2 | 600 | 20 | 30 | 10 | 1 |
3 | 1800 | 20 | 30 | 10 | 1 |
4 | 600 | 20 | 30 | 10 | 1 |
5 | 600 | 60 | 30 | 10 | 1 |
6 | 600 | 90 | 30 | 10 | 1 |
7 | 300 | 20 | 1 | 10 | 1 |
8 | 300 | 20 | 5 | 10 | 1 |
9 | 300 | 20 | 30 | 10 | 1 |
10 | 300 | 20 | 60 | 10 | 1 |
11 | 300 | 20 | 30 | 10 | 1 |
12 | 300 | 20 | 30 | 15 | 1 |
13 | 300 | 20 | 30 | 20 | 1 |
表2 改性镁渣湿法碳酸化实验方案
实验编号 | 转子速度 /r·min-1 | 温度 /℃ | 通气时间 /min | 液固比 /mL·g-1 | 通气速率 /L·min-1 |
---|---|---|---|---|---|
0(对照组) | 300 | 20 | 30 | 10 | 0 |
1 | 300 | 20 | 30 | 10 | 1 |
2 | 600 | 20 | 30 | 10 | 1 |
3 | 1800 | 20 | 30 | 10 | 1 |
4 | 600 | 20 | 30 | 10 | 1 |
5 | 600 | 60 | 30 | 10 | 1 |
6 | 600 | 90 | 30 | 10 | 1 |
7 | 300 | 20 | 1 | 10 | 1 |
8 | 300 | 20 | 5 | 10 | 1 |
9 | 300 | 20 | 30 | 10 | 1 |
10 | 300 | 20 | 60 | 10 | 1 |
11 | 300 | 20 | 30 | 10 | 1 |
12 | 300 | 20 | 30 | 15 | 1 |
13 | 300 | 20 | 30 | 20 | 1 |
实验编号 | D10/μm | D50/μm | D90/μm | 均匀性系数 | 比表面积/m2·g-1 |
---|---|---|---|---|---|
0 | 2.470 | 11.696 | 36.712 | 1.980 | 0.978 |
1 | 5.731 | 23.315 | 45.640 | 0.508 | 0.493 |
6 | 7.353 | 16.490 | 31.418 | 0.457 | 0.578 |
10 | 7.323 | 19.739 | 38.884 | 0.487 | 0.490 |
表3 碳酸化反应后MMS粒径的变化
实验编号 | D10/μm | D50/μm | D90/μm | 均匀性系数 | 比表面积/m2·g-1 |
---|---|---|---|---|---|
0 | 2.470 | 11.696 | 36.712 | 1.980 | 0.978 |
1 | 5.731 | 23.315 | 45.640 | 0.508 | 0.493 |
6 | 7.353 | 16.490 | 31.418 | 0.457 | 0.578 |
10 | 7.323 | 19.739 | 38.884 | 0.487 | 0.490 |
矿物成分 | 实验条件 | 衍射峰位置 | 总峰面积 | 总峰高度 |
---|---|---|---|---|
CaCO3 | 300r/min | 23.1°、29.5°、36.0°、39.5°、43.2°、47.6°、57.5° | 23633 | 2448 |
600r/min | 40211 | 4540 | ||
1800r/min | 44253 | 4410 | ||
CaCO3 | 20℃ | 23.1°、29.5°、36.0°、39.5°、43.2°、47.6°、57.5° | 40211 | 4540 |
60℃ | 41428 | 3109 | ||
90℃ | 31045 | 3026 | ||
CaCO3 | 1min | 23.1°、29.5°、36.0°、39.5°、3.2°、47.6°、57.5° | 9964 | 777 |
5min | 13848 | 1334 | ||
30min | 23633 | 2448 | ||
60min | 41980 | 4540 | ||
CaCO3 | 10mL/g | 23.1°、29.5°、36.0°、39.5°、43.2°、47.6°、57.5° | 23633 | 2448 |
15mL/g | 36961 | 4261 | ||
20mL/g | 30727 | 3440 |
表4 MMS碳酸化产物的衍射峰特征
矿物成分 | 实验条件 | 衍射峰位置 | 总峰面积 | 总峰高度 |
---|---|---|---|---|
CaCO3 | 300r/min | 23.1°、29.5°、36.0°、39.5°、43.2°、47.6°、57.5° | 23633 | 2448 |
600r/min | 40211 | 4540 | ||
1800r/min | 44253 | 4410 | ||
CaCO3 | 20℃ | 23.1°、29.5°、36.0°、39.5°、43.2°、47.6°、57.5° | 40211 | 4540 |
60℃ | 41428 | 3109 | ||
90℃ | 31045 | 3026 | ||
CaCO3 | 1min | 23.1°、29.5°、36.0°、39.5°、3.2°、47.6°、57.5° | 9964 | 777 |
5min | 13848 | 1334 | ||
30min | 23633 | 2448 | ||
60min | 41980 | 4540 | ||
CaCO3 | 10mL/g | 23.1°、29.5°、36.0°、39.5°、43.2°、47.6°、57.5° | 23633 | 2448 |
15mL/g | 36961 | 4261 | ||
20mL/g | 30727 | 3440 |
1 | CHEN Wanqi, TANG Haoyue, HE Li, et al. Co-effect assessment on regional air quality: A perspective of policies and measures with greenhouse gas reduction potential[J]. The Science of the Total Environment, 2022, 851: 158119. |
2 | ZHANG Yixiang, FU Bowen. Impact of China’s establishment of ecological civilization pilot zones on carbon dioxide emissions[J]. Journal of Environmental Management, 2023, 325: 116652. |
3 | DAVIS Steven J, CALDEIRA Ken, Damon MATTHEWS H. Future CO2 emissions and climate change from existing energy infrastructure[J]. Science, 2010, 329(5997): 1330-1333. |
4 | YANG Yang, XU Wenqing, WANG Yan, et al. Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China[J]. Chemical Engineering Journal, 2022, 450: 138438. |
5 | 王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023, 42(3): 1572-1582. |
WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. | |
6 | MONTEIRO Juliana, ROUSSANALY Simon. CCUS scenarios for the cement industry: Is CO2 utilization feasible?[J]. Journal of CO2 Utilization, 2022, 61: 102015. |
7 | SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature, 1990, 345(6275): 486. |
8 | LI Yingjie, SUN Rongyue, LIU Changtian, et al. CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles[J]. International Journal of Greenhouse Gas Control, 2012, 9: 117-123. |
9 | CHEN Zhimin, LI Rui, ZHENG Xianming, et al. Carbon sequestration of steel slag and carbonation for activating RO phase[J]. Cement and Concrete Research, 2021, 139: 106271. |
10 | LUO Zhongtao, WANG Yu, YANG Guangjun, et al. Effect of curing temperature on carbonation behavior of steel slag compacts[J]. Construction and Building Materials, 2021, 291: 123369. |
11 | QIN Ling, GAO Xiaojian. Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation[J]. Waste Management, 2019, 89: 254-264. |
12 | 赵雯涵, 吴水木, 李英杰. 钙基工业固废循环捕集CO2性能研究进展[J]. 煤炭学报, 2022, 47(11): 3926-3935. |
ZHAO Wenhan, WU Shuimu, LI Yingjie. Research progress on CO2 capture performance of calcium-based industrial solid waste recycling[J]. Journal of China Coal Society, 2022, 47(11): 3926-3935. | |
13 | 李文秀, 杨宇航, 黄艳, 等. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
LI Wenxiu, YANG Yuhang, HUANG Yan, et al. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. | |
14 | GHOULEH Zaid, GUTHRIE Roderick I L, SHAO Yixin. Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete[J]. Journal of CO2 Utilization, 2017, 18: 125-138. |
15 | MA Zhuohui, LIAO H, WANG Li, et al. Effects of iron/silicon/magnesium/aluminum on CaO carbonation of CO2 in steel slag-based building materials during carbonation curing[J]. Construction and Building Materials, 2021, 298: 123889. |
16 | 任国宏, 廖洪强, 高宏宇, 等. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21): 3556-3560. |
REN Guohong, LIAO Hongqiang, GAO Hongyu, et al. Carbon dioxide-fixing and compression strength enhancing characteristics of mineralized immobilization of fly ash-calcium carbide slag slurry[J]. Materials Reports, 2019, 33(21): 3556-3560. | |
17 | MIAO Endong, ZHENG Xufan, XIONG Zhuo, et al. Kinetic modeling of direct aqueous mineral carbonation using carbide slag in a stirred tank reactor[J]. Fuel, 2022, 315: 122837. |
18 | LIU Lili, JI Yongsheng, GAO Furong, et al. Study on high-efficiency CO2 absorption by fresh cement paste[J]. Construction and Building Materials, 2021, 270: 121364. |
19 | LI Yisha, MEHDIZADEH Hamideh, MO Kim Hung, et al. Co-utilization of aqueous carbonated basic oxygen furnace slag (BOFS) and carbonated filtrate in cement pastes considering reaction duration effect[J]. Cement and Concrete Composites, 2023, 138: 104988. |
20 | HALMANN M, FREI A, STEINFELD A. Magnesium production by the pidgeon process involving dolomite calcination and MgO silicothermic reduction: thermodynamic and environmental analyses[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2146-2154. |
21 | 唐洋洋, 李林波, 王超, 等. 镁渣资源化利用新进展[J]. 现代化工, 2020, 40(12): 63-67. |
TANG Yangyang, LI Linbo, WANG Chao, et al. New progress in reutilization of magnesium slag[J]. Modern Chemical Industry, 2020, 40(12): 63-67. | |
22 | XU Jilei, LIU Jinhui, GUO Dong, et al. Mechanism of slag pellets sticking on the wall of reduction pot in magnesium production by Pidgeon process[J]. Journal of Magnesium and Alloys, 2022: https://doi.org/10.1016/j.jma.2022.10.016. |
23 | 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845. |
LIU Lang, RUAN Shishan, FANG Zhiyu, et al. Modification of magnesium slag and its application in the field of mine filling[J]. Journal of China Coal Society, 2021, 46(12): 3833-3845. | |
24 | 孙伟吉, 刘浪, 徐龙华, 等. 改性镁渣基矿用复合胶凝材料的水化性能[J]. 中南大学学报(自然科学版), 2022, 53(10): 4057-4070. |
SUN Weiji, LIU Lang, XU Longhua, et al. Hydration properties of modified magnesium slag-based composite cementitious materials for mining[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 4057-4070. | |
25 | RUAN Shishan, LIU Lang, ZHU Mengbo, et al. Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material[J]. Science of The Total Environment, 2023, 869: 161631. |
26 | WANG Dan, CHANG Jun. Comparison on accelerated carbonation of β-C2S, Ca(OH)2, and C4AF: Reaction degree, multi-properties, and products[J]. Construction and Building Materials, 2019, 224: 336-347. |
27 | WANG Dan, FANG Yanfeng, ZHANG Yangyang, et al. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S[J]. Journal of CO2 Utilization, 2019, 34: 149-162. |
28 | 伊元荣, 马忠乐, 杜昀聪, 等. 不同温度下精炼渣碳酸化微观结构变化[J]. 钢铁研究学报, 2021, 33(2): 127-135. |
YI Yuanrong, MA Zhongle, DU Yuncong, et al. Microstructure changes of refining slag under carbonization at different reaction temperatures[J]. Journal of Iron and Steel Research, 2021, 33(2): 127-135. | |
29 | LI Yemei, PEI Silu, PAN Shuyuan, et al. Carbonation and utilization of basic oxygen furnace slag coupled with concentrated water from electrodeionization[J]. Journal of CO2 Utilization, 2018, 25: 46-55. |
30 | METZ V, GANOR J. Stirring effect on kaolinite dissolution rate[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3475-3490. |
31 | DUAN Zhenhao, SUN Rui. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271. |
32 | LI Yemei, PEI Silu, PAN Shuyuan, et al. Carbonation and utilization of basic oxygen furnace slag coupled with concentrated water from electrodeionization[J]. Journal of CO2 Utilization, 2018, 25: 46-55. |
33 | DROUET E, POYET S, LE BESCOP P, et al. Carbonation of hardened cement pastes: Influence of temperature[J]. Cement and Concrete Research, 2019, 115: 445-459. |
34 | JI Long, YU Hai, WANG Xiaolong, et al. CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal[J]. Fuel Processing Technology, 2017, 156: 429-437. |
35 | TAN Yicheng, LIU Zhichao, WANG Fazhou. Effect of temperature on the carbonation behavior of γ-C2S compacts[J]. Cement and Concrete Composites, 2022, 133: 104652. |
36 | 沈鹤鸣, 吴灿彬, 李志华, 等. 氢氧化钙的固碳功能性研究—CO2浓度与碳化时间的影响[J]. 功能材料, 2020, 51(1): 1115-1119. |
SHEN Heming, WU Canbin, LI Zhihua, et al. Carbon sequestration functionality of calcium hydroxide—Effect of CO2 concentration and carbonation time[J]. Journal of Functional Materials, 2020, 51(1): 1115-1119. | |
37 | 郑鹏, 李蔚玲, 郭亚飞, 等. 鼓泡床中电石渣加速碳酸化分析与响应面优化[J]. 化工进展, 2022, 41(3): 1528-1538. |
ZHENG Peng, LI Weiling, GUO Yafei, et al. Analysis of carbide slag accelerated carbonation in bubble column and response surface optimization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1528-1538. | |
38 | ZHANG Yunhua, WANG Ruoxin, LIU Zhiyi, et al. A novel carbonate binder from waste hydrated cement paste for utilization of CO2 [J]. Journal of CO2 Utilization, 2019, 32: 276-280. |
39 | RAUTARAY Debabrata, SAINKAR S R, SASTRY Murali. Thermally evaporated aerosol OT thin films as templates for the room temperature synthesis of aragonite crystals[J]. Chemistry of Materials, 2003, 15(14): 2809-2814. |
40 | CHEN Z X, CHU S H, LEE Y S, et al. Coupling effect of γ-dicalcium silicate and slag on carbonation resistance of low carbon materials[J]. Journal of Cleaner Production, 2020, 262: 121385. |
41 | ASHRAF Warda, OLEK Jan. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: Potential of utilizing low-lime calcium silicates in cement-based materials[J]. Journal of Materials Science, 2016, 51(13): 6173-6191. |
42 | CHEN Z X, CHU S H, ISHAK S, et al. Roles of particle packing and water coating thickness in carbonation and strength of γ-dicalcium silicate-based low carbon materials[J]. Journal of Cleaner Production, 2022, 358: 131735. |
43 | WEI Xinlei, NI Wen, ZHANG Siqi, et al. Influence of the key factors on the performance of steel slag-desulphurisation gypsum-based hydration-carbonation materials[J]. Journal of Building Engineering, 2022, 45: 103591. |
44 | ZHANG Jiake, SHI Caijun, LI Yake, et al. Performance enhancement of recycled concrete aggregates through carbonation[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015029. |
45 | LEE Seung-Woo, KIM Yong-Jae, LEE Yun-Hee, et al. Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis[J]. Materials & Design, 2016, 112: 367-373. |
46 | MO Liwu, HAO Yuanyuan, LIU Yunpeng, et al. Preparation of calcium carbonate binders via CO2 activation of magnesium slag[J]. Cement and Concrete Research, 2019, 121: 81-90. |
47 | WANG Dan, XIONG Cang, LI Wenzheng, et al. Growth of calcium carbonate induced by accelerated carbonation of tricalcium silicate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14718-14731. |
48 | CHANG Jun, JIANG Ting, CUI Kai. Influence on compressive strength and CO2 capture after accelerated carbonation of combination β-C2S with γ-C2S[J]. Construction and Building Materials, 2021, 312: 125359. |
[1] | 高飞, 刘志松, 潘珂珂, 刘敏敏, 代斌, 但建明, 于锋. 蛭石基FeCeO x 催化剂及CO选择性催化还原NO[J]. 化工进展, 2024, 43(4): 1851-1862. |
[2] | 李开瑞, 高照华, 刘甜甜, 李静, 魏海生. 还原温度调变Rh/FePO4催化剂喹啉选择加氢性能[J]. 化工进展, 2024, 43(3): 1342-1349. |
[3] | 徐泽文, 王明, 王强, 侯影飞. 胺基材料在二氧化碳分离膜领域研究进展[J]. 化工进展, 2024, 43(3): 1374-1386. |
[4] | 楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534. |
[5] | 张瑞凯, 张会书, 郑龙云, 曾爱武. CO2吸收过程中气相分压对Rayleigh对流传质特性的影响[J]. 化工进展, 2024, 43(2): 913-924. |
[6] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[7] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[8] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[9] | 任鹏锟, 仲兆平, 杨宇轩, 张杉, 杜浩然, 李骞. 改性海泡石对污泥热解过程中重金属的控制[J]. 化工进展, 2024, 43(1): 541-550. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[12] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[15] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |