化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1374-1386.DOI: 10.16085/j.issn.1000-6613.2023-0468
• 材料科学与技术 • 上一篇
收稿日期:
2023-03-27
修回日期:
2023-06-21
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
侯影飞
作者简介:
徐泽文(1994—),男,博士研究生,研究方向为膜法碳捕集。E-mail:1057245074@qq.com。
基金资助:
XU Zewen1(), WANG Ming1, WANG Qiang2, HOU Yingfei1()
Received:
2023-03-27
Revised:
2023-06-21
Online:
2024-03-10
Published:
2024-04-11
Contact:
HOU Yingfei
摘要:
膜法碳捕集是实现双碳目标的重要途径,但受限于材料本身,膜材料的分离性能存在上限。胺基材料可以和CO2发生可逆反应,能够显著提高膜材料的分离性能,常被作为促进传质的载体引入到膜体系。本文介绍了胺基材料促进CO2传质的机理,重点归纳了胺基材料引入到膜体系的4类方法(涂覆法、反应法、接枝法、掺杂法)及制备膜材料的性能,并分析其优势与不足。本文指出胺基材料促进CO2传质机理需要进一步探索,强调开发高胺基密度的膜材料和以更加“牢固”的方式将胺基材料引入膜体系是领域未来需重点发展的方向,利用机器学习提高膜材料设计效率对该领域发展具有指导意义。分析表明真实工况下胺基膜材料的性能稳定性、设备稳定性以及工艺稳定性是值得关注的研究领域,建立完整的胺基膜法CO2捕集技术链仍面临巨大挑战。
中图分类号:
徐泽文, 王明, 王强, 侯影飞. 胺基材料在二氧化碳分离膜领域研究进展[J]. 化工进展, 2024, 43(3): 1374-1386.
XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386.
方法 | 膜 | 测试条件 | 原料气组成 | CO2渗透性 | CO2/N2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|---|
涂覆法 | UHMW PVAm | 57℃/0.15psi(表压) | CO2/N2(20/80) | 839.0GPU | 161.0 | 2021 | [ |
PI-2-TFSI | 35℃/0.101MPa | 纯气 | 90.1Barrer | 21.9 | 2020 | [ | |
30% PS-MFI | 35℃/0.1MPa | CO2/N2(21/79) | 2397.0Barrer | 28.8 | 2021 | [ | |
20% ETS-10 | 35℃/0.1MPa | CO2/N2(21/79) | 1225.0Barrer | 36.6 | 2021 | [ | |
20% SAPO-34 | 35℃/0.1MPa | CO2/N2(21/79) | 2248.0Barrer | 33.2 | 2021 | [ | |
BAPP-PMDA | 30℃/0.1MPa | 纯气 | 192.0Barrer | 96.0 | 2021 | [ | |
BDAF-PMDA | 30℃/0.1MPa | 纯气 | 3135.0Barrer | 21.8 | 2021 | [ | |
MX/IL | 25℃/0.1MPa | CO2/N2(10/90) | 519.0GPU | 210.0 | 2022 | [ | |
Zr-Fc-SILM-460 | —/0.101MPa | 纯气 | 66.8Barrer | 216.9 | 2020 | [ | |
PIL-IL/GO | 25℃/0.0Pa | CO2/N2(410μL/L) | 3090.0GPU | 1189.0 | 2021 | [ | |
sIPN/IL | 20℃/0.0Pa | 纯气 | 508.0Barrer | 52.7 | 2021 | [ | |
mPEG-b-PAN/IL | 35℃/0.101MPa | 纯气 | 456.4Barrer | 61.4 | 2022 | [ | |
PIL-IL | 35℃/0.2atm | 纯气 | 2070.0Barrer | 24.6 | 2020 | [ | |
反应法 | PIP-CMC/TMC | 25℃/0.11MPa | CO2/N2(15/85) | 1479.0GPU | 119.0 | 2021 | [ |
TFN-BN | 25℃/0.3MPa | 纯气 | 44.6GPU | 38.8 | 2021 | [ | |
TFN-PDA@BN | 25℃/0.3MPa | 纯气 | 46.0GPU | 43.6 | 2021 | [ | |
TFN-PEI@BN | 25℃/0.3MPa | 纯气 | 47.0GPU | 46.9 | 2021 | [ | |
FIHN-PEGDME-500-180 | 35℃/3.5atm | 纯气 | 1566.8Barrer | 35.1 | 2019 | [ | |
FIHN-PEGDME-500-60 | 35℃/3.5atm | 纯气 | 1155.0Barrer | 44.9 | 2019 | [ | |
FIHN-PEGDME-500-16 | 35℃/3.5atm | 纯气 | 409.7Barrer | 36.6 | 2019 | [ | |
MEDβCD/PA-0.4 | 25℃/0.1MPa | 纯气 | 171.6GPU | 69.0 | 2023 | [ | |
MEDβCD/PA-0.5 | 25℃/0.1MPa | 纯气 | 222.5GPU | 53.6 | 2023 | [ | |
DNMDAm-CD0.20/TMC | 25℃/0.15MPa | CO2/N2(15/85) | 2792.0GPU | 171.0 | 2023 | [ | |
接枝法 | AOPIM-1 (9%) | 35℃/0.101MPa | 纯气 | 2483.6Barrer | 31.2 | 2020 | [ |
GO-EDA | 75℃/1.0psi | 纯气 | 137.0GPU | 155.0 | 2019 | [ | |
PDA/UIO-66 | 25℃/0.1MPa | 纯气 | 1115.0GPU | 47.4 | 2019 | [ | |
am-PTFE AF | 25℃/0.12MPa | CO2/N2(10/90) | 1200.0Barrer | 约1100.0 | 2022 | [ | |
PIM-co-UiO-6672h | 25℃/0.2MPa | 纯气 | 12498.0Barrer | 54.2 | 2018 | [ | |
MPCM9/1-MA-2 | 35℃/0.35MPa | 纯气 | 1450.0Barrer | 45.8 | 2018 | [ | |
PIM-1-IL3 | 25℃/100.0psi | 纯气 | 817.0Barrer | 35.5 | 2020 | [ | |
8%-VIm-GO/QCS(NaOH) | 25℃/0.2MPa | CO2/N2(10/90) | 533.0Barrer | 54.9 | 2020 | [ | |
PI-POEM (3∶1) | 35℃/15.0psi | 纯气 | 1220.0Barrer | 22.5 | 2023 | [ | |
掺杂法 | NUS-8-NH2/PIM-1 | 25℃/0.2MPa | CO2/N2(20/80) | 14638.0Barrer | 29.2 | 2022 | [ |
PDA10.3@NUIO-66/Pebax | 25℃/0.3MPa | 纯气 | 94.6Barrer | 70.6 | 2022 | [ | |
PAN-NH2/PEO | 35℃/0.5MPa | 纯气 | 1160.0Barrer | 73.0 | 2022 | [ | |
PVAM/ZIF-8@NENP-NH2 | 25℃/0.1MPa | 纯气 | 301.0GPU | 91.0 | 2022 | [ | |
PVAM/HMMP-1 | 25℃/0.1MPa | CO2/N2(15/85) | 2364.0GPU | 152.0 | 2021 | [ | |
PAA30 | 90℃/0.2MPa | CO2/N2(10/90) | 39.0GPU | 260.0 | 2018 | [ | |
10%MFC-β-alanine | 35℃/0.17MPa | CO2/N2(10/90) | 264.0Barrer | 50.0 | 2019 | [ | |
PI/TB | 35℃/100.0psi | 纯气 | 79.3Barrer | 18.0 | 2022 | [ | |
UKX-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 218.8Barrer | 146.0 | 2021 | [ | |
UKM-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 171.9Barrer | 159.0 | 2021 | [ | |
UKI-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 160.3Barrer | 278.0 | 2021 | [ | |
25% ZIF-UC-6/Pebax | 30℃/0.1~0.4MPa | CO2/N2(50/50) | 576.0Barrer | 86.2 | 2023 | [ |
表1 胺基膜材料性能汇总
方法 | 膜 | 测试条件 | 原料气组成 | CO2渗透性 | CO2/N2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|---|
涂覆法 | UHMW PVAm | 57℃/0.15psi(表压) | CO2/N2(20/80) | 839.0GPU | 161.0 | 2021 | [ |
PI-2-TFSI | 35℃/0.101MPa | 纯气 | 90.1Barrer | 21.9 | 2020 | [ | |
30% PS-MFI | 35℃/0.1MPa | CO2/N2(21/79) | 2397.0Barrer | 28.8 | 2021 | [ | |
20% ETS-10 | 35℃/0.1MPa | CO2/N2(21/79) | 1225.0Barrer | 36.6 | 2021 | [ | |
20% SAPO-34 | 35℃/0.1MPa | CO2/N2(21/79) | 2248.0Barrer | 33.2 | 2021 | [ | |
BAPP-PMDA | 30℃/0.1MPa | 纯气 | 192.0Barrer | 96.0 | 2021 | [ | |
BDAF-PMDA | 30℃/0.1MPa | 纯气 | 3135.0Barrer | 21.8 | 2021 | [ | |
MX/IL | 25℃/0.1MPa | CO2/N2(10/90) | 519.0GPU | 210.0 | 2022 | [ | |
Zr-Fc-SILM-460 | —/0.101MPa | 纯气 | 66.8Barrer | 216.9 | 2020 | [ | |
PIL-IL/GO | 25℃/0.0Pa | CO2/N2(410μL/L) | 3090.0GPU | 1189.0 | 2021 | [ | |
sIPN/IL | 20℃/0.0Pa | 纯气 | 508.0Barrer | 52.7 | 2021 | [ | |
mPEG-b-PAN/IL | 35℃/0.101MPa | 纯气 | 456.4Barrer | 61.4 | 2022 | [ | |
PIL-IL | 35℃/0.2atm | 纯气 | 2070.0Barrer | 24.6 | 2020 | [ | |
反应法 | PIP-CMC/TMC | 25℃/0.11MPa | CO2/N2(15/85) | 1479.0GPU | 119.0 | 2021 | [ |
TFN-BN | 25℃/0.3MPa | 纯气 | 44.6GPU | 38.8 | 2021 | [ | |
TFN-PDA@BN | 25℃/0.3MPa | 纯气 | 46.0GPU | 43.6 | 2021 | [ | |
TFN-PEI@BN | 25℃/0.3MPa | 纯气 | 47.0GPU | 46.9 | 2021 | [ | |
FIHN-PEGDME-500-180 | 35℃/3.5atm | 纯气 | 1566.8Barrer | 35.1 | 2019 | [ | |
FIHN-PEGDME-500-60 | 35℃/3.5atm | 纯气 | 1155.0Barrer | 44.9 | 2019 | [ | |
FIHN-PEGDME-500-16 | 35℃/3.5atm | 纯气 | 409.7Barrer | 36.6 | 2019 | [ | |
MEDβCD/PA-0.4 | 25℃/0.1MPa | 纯气 | 171.6GPU | 69.0 | 2023 | [ | |
MEDβCD/PA-0.5 | 25℃/0.1MPa | 纯气 | 222.5GPU | 53.6 | 2023 | [ | |
DNMDAm-CD0.20/TMC | 25℃/0.15MPa | CO2/N2(15/85) | 2792.0GPU | 171.0 | 2023 | [ | |
接枝法 | AOPIM-1 (9%) | 35℃/0.101MPa | 纯气 | 2483.6Barrer | 31.2 | 2020 | [ |
GO-EDA | 75℃/1.0psi | 纯气 | 137.0GPU | 155.0 | 2019 | [ | |
PDA/UIO-66 | 25℃/0.1MPa | 纯气 | 1115.0GPU | 47.4 | 2019 | [ | |
am-PTFE AF | 25℃/0.12MPa | CO2/N2(10/90) | 1200.0Barrer | 约1100.0 | 2022 | [ | |
PIM-co-UiO-6672h | 25℃/0.2MPa | 纯气 | 12498.0Barrer | 54.2 | 2018 | [ | |
MPCM9/1-MA-2 | 35℃/0.35MPa | 纯气 | 1450.0Barrer | 45.8 | 2018 | [ | |
PIM-1-IL3 | 25℃/100.0psi | 纯气 | 817.0Barrer | 35.5 | 2020 | [ | |
8%-VIm-GO/QCS(NaOH) | 25℃/0.2MPa | CO2/N2(10/90) | 533.0Barrer | 54.9 | 2020 | [ | |
PI-POEM (3∶1) | 35℃/15.0psi | 纯气 | 1220.0Barrer | 22.5 | 2023 | [ | |
掺杂法 | NUS-8-NH2/PIM-1 | 25℃/0.2MPa | CO2/N2(20/80) | 14638.0Barrer | 29.2 | 2022 | [ |
PDA10.3@NUIO-66/Pebax | 25℃/0.3MPa | 纯气 | 94.6Barrer | 70.6 | 2022 | [ | |
PAN-NH2/PEO | 35℃/0.5MPa | 纯气 | 1160.0Barrer | 73.0 | 2022 | [ | |
PVAM/ZIF-8@NENP-NH2 | 25℃/0.1MPa | 纯气 | 301.0GPU | 91.0 | 2022 | [ | |
PVAM/HMMP-1 | 25℃/0.1MPa | CO2/N2(15/85) | 2364.0GPU | 152.0 | 2021 | [ | |
PAA30 | 90℃/0.2MPa | CO2/N2(10/90) | 39.0GPU | 260.0 | 2018 | [ | |
10%MFC-β-alanine | 35℃/0.17MPa | CO2/N2(10/90) | 264.0Barrer | 50.0 | 2019 | [ | |
PI/TB | 35℃/100.0psi | 纯气 | 79.3Barrer | 18.0 | 2022 | [ | |
UKX-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 218.8Barrer | 146.0 | 2021 | [ | |
UKM-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 171.9Barrer | 159.0 | 2021 | [ | |
UKI-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 160.3Barrer | 278.0 | 2021 | [ | |
25% ZIF-UC-6/Pebax | 30℃/0.1~0.4MPa | CO2/N2(50/50) | 576.0Barrer | 86.2 | 2023 | [ |
1 | 刘芬, 丰平仲, 朱顺妮, 等. 煤化工烟道气毒性成分对Chlorella pyrenoidosa生长和细胞成分的影响[J]. 化工进展, 2020, 39(11): 4668-4676. |
LIU Fen, FENG Pingzhong, ZHU Shunni, et al. Effects of toxic components of flue gas from coal chemical industry on growth and cell components of Chlorella pyrenoidosa [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4668-4676. | |
2 | 邹才能, 吴松涛, 杨智, 等. 碳中和战略背景下建设碳工业体系的进展、挑战及意义[J]. 石油勘探与开发, 2023, 50(1): 190-205. |
ZOU Caineng, WU Songtao, YANG Zhi, et al. Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy[J]. Petroleum Exploration and Development, 2023, 50(1): 190-205. | |
3 | ERANS M, SANZ-PÉREZ E S, HANAK D P, et al. Direct air capture: Process technology, techno-economic and socio-political challenges[J]. Energy & Environmental Science, 2022, 15(4): 1360-1405. |
4 | 张杰, 郭伟, 张博, 等. 空气中直接捕集CO2技术研究进展[J]. 洁净煤技术, 2021, 27(2): 57-68. |
ZHANG Jie, GUO Wei, ZHANG Bo, et al. Research progress on direct capture of CO2 from air[J]. Clean Coal Technology, 2021, 27(2): 57-68. | |
5 | 雷婷, 喻树楠, 周昶安, 等. 吸附法碳捕集固体胺吸附剂成型技术研究进展[J]. 化工进展, 2022, 41(12): 6213-6225. |
LEI Ting, YU Shunan, ZHOU Chang’an, et al. Research progress on the shaping technology of solid amine adsorbents for CO2 capture by adsorption method[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6213-6225. | |
6 | 王志, 原野, 生梦龙, 等. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
WANG Zhi, YUAN Ye, SHENG Menglong, et al. Membrane technology for carbon capture—Research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. | |
7 | WANG Kunpeng, WANG Xiaomao, JANUSZEWSKI B, et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships[J]. Chemical Society Reviews, 2022, 51(2): 672-719. |
8 | LIU Chao, WANG Wenjing, YANG Bo, et al. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies[J]. Water Research, 2021, 195: 116976. |
9 | 陆诗建, 贡玉萍, 刘玲, 等. 有机胺CO2吸收技术研究现状与发展方向[J]. 洁净煤技术, 2022, 28(9): 44-54. |
LU Shijian, GONG Yuping, LIU Ling, et al. Research status and future development direction of CO2 absorption technology for organic amine[J]. Clean Coal Technology, 2022, 28(9): 44-54. | |
10 | HAN Yang, HO W S W. Polymeric membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2021, 628: 119244. |
11 | DUBEY A, ARORA A. Advancements in carbon capture technologies: A review[J]. Journal of Cleaner Production, 2022, 373: 133932. |
12 | LIU Min, NOTHLING M D, ZHANG Sui, et al. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond[J]. Progress in Polymer Science, 2022, 126: 101504. |
13 | PAZANI F, SALEHI MALEH M, SHARIATIFAR M, et al. Engineered graphene-based mixed matrix membranes to boost CO2 separation performance: Latest developments and future prospects[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112294. |
14 | CHEN Binghong, XIE Hongli, SHEN Liguo, et al. Covalent organic frameworks: The rising-star platforms for the design of CO2 separation membranes[J]. Small, 2023,19(17): e2207313. |
15 | 赵国珂, 潘国元, 张杨, 等. 石墨烯基材料在CO2分离膜领域的研究进展[J]. 化工进展, 2022, 41(11): 5896-5911. |
ZHAO Guoke, PAN Guoyuan, ZHANG Yang, et al. Recent advances in graphene-based membranes for CO2 separation[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5896-5911. | |
16 | ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
17 | CHEN Zan, ZHANG Peng, WU Hong, et al. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation[J]. Separation and Purification Technology, 2022, 288: 120682. |
18 | MA Cuihua, WANG Ming, WANG Zhi, et al. Recent progress on thin film composite membranes for CO2 separation[J]. Journal of CO2 Utilization, 2020, 42: 101296. |
19 | ZHAO Yanan, WINSTON HO W S. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport[J]. Journal of Membrane Science, 2012, 415/416: 132-138. |
20 | TONG Zi, HO W S W. New sterically hindered polyvinylamine membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2017, 543: 202-211. |
21 | PATE S G, XU Hui, O’BRIEN C P. Operando observation of CO2 transport intermediates in polyvinylamine facilitated transport membranes, and the role of water in the formation of intermediates, using transmission FTIR spectroscopy[J]. Journal of Materials Chemistry A, 2022, 10(8): 4418-4427. |
22 | JIANG Xu, Kunli GOH, WANG Rong. Air plasma assisted spray coating of Pebax-1657 thin-film composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2022, 658: 120741. |
23 | MA Cuihua, LI Qinghua, WANG Zhi, et al. High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation[J]. Journal of Membrane Science, 2022, 652: 120459. |
24 | LEE Chang Soo, MOON Juyoung, PARK Jung Tae, et al. Engineering CO2-philic pathway via grafting poly(ethylene glycol) on graphene oxide for mixed matrix membranes with high CO2 permeance[J]. Chemical Engineering Journal, 2023, 453: 139818. |
25 | THÜR R, VAN HAVERE D, VAN VELTHOVEN N, et al. Correlating MOF-808 parameters with mixed-matrix membrane(MMM) CO2 permeation for a more rational MMM development[J]. Journal of Materials Chemistry A, 2021, 9(21): 12782-12796. |
26 | XU Hui, PATE S G, O’BRIEN C P. Mathematical modeling of CO2 facilitated transport across polyvinylamine membranes with direct operando observation of amine carrier saturation[J]. Chemical Engineering Journal, 2023, 460: 141728. |
27 | WANG Ting, JIANG Lingli, ZHANG Yanling, et al. Fabrication of polyimide mixed matrix membranes with asymmetric confined mass transfer channels for improved CO2 separation[J]. Journal of Membrane Science, 2021, 637: 119653. |
28 | WANG Chenlu, WANG Yanlei, LIU Ju, et al. Entropy driving highly selective CO2 separation in nanoconfined ionic liquids[J]. Chemical Engineering Journal, 2022, 440: 135918. |
29 | KIM Taek-Joong, LI Bao’an, M-B HÄGG. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(23): 4326-4336. |
30 | KIM Taek-Joong, VRÅLSTAD H, SANDRU M, et al. Separation performance of PVAm composite membrane for CO2 capture at various pH levels[J]. Journal of Membrane Science, 2013, 428: 218-224. |
31 | CHEN Kai K, HAN Yang, ZHANG Zhi’en, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine[J]. Journal of Membrane Science, 2021, 628: 119215. |
32 | HE Xuezhong, LINDBRÅTHEN A, KIM Taek-Joong, et al. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas[J]. International Journal of Greenhouse Gas Control, 2017, 64: 323-332. |
33 | HE Xuezhong. Polyvinylamine-based facilitated transport membranes for post-combustion CO2 capture: Challenges and perspectives from materials to processes[J]. Engineering, 2021, 7(1): 124-131. |
34 | 膜法捕集二氧化碳示范装置通过测试[J]. 膜科学与技术, 2022, 42(1): 56. |
The demonstration device of carbon dioxide capture by membrane passed the test[J]. Membrane Science and Technology, 2022, 42(1): 56. | |
35 | SHENG Menglong, DONG Songlin, QIAO Zhihua, et al. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2021, 636: 119595. |
36 | YANG Hongjun, FAN Shuanshi, LANG Xuemei, et al. Economic comparison of three gas separation technologies for CO2 capture from power plant flue gas[J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 615-620. |
37 | SANAEEPUR H, EBADI AMOOGHIN A, BANDEHALI S, et al. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
38 | XU Xiaochen, WANG Jingjing, DONG Jie, et al. Ionic polyimide membranes containing Tröger’s base: Synthesis, microstructure and potential application in CO2 separation[J]. Journal of Membrane Science, 2020, 602: 117967. |
39 | SONG Ningning, MA Tengning, WANG Tianjiao, et al. Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides[J]. Journal of Colloid and Interface Science, 2020, 573: 328-335. |
40 | YERZHANKYZY A, GHANEM B S, WANG Yingge, et al. Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide[J]. Journal of Membrane Science, 2020, 595: 117512. |
41 | SOLANGI N H, ANJUM A, TANJUNG F A, et al. A review of recent trends and emerging perspectives of ionic liquid membranes for CO2 separation[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105860. |
42 | JIA Youyu, SHI Feng, LI Hongying, et al. Facile ionization of the nanochannels of lamellar membranes for stable ionic liquid immobilization and efficient CO2 separation[J]. ACS Nano, 2022, 16(9): 14379-14389. |
43 | DENG Zheng, WAN Ting, CHEN Danke, et al. Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation[J]. Small, 2020, 16(34): e2002699. |
44 | LEE Yunyang, GURKAN B. Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation[J]. Journal of Membrane Science, 2021, 638: 119652. |
45 | WANG Zhuyuan, LIANG Songmiao, KANG Yuan, et al. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes[J]. Progress in Polymer Science, 2021, 122: 101450. |
46 | YU Zhen, MA Songqi, TANG Zhaobin, et al. Amino acids as latent curing agents and their application in fully bio-based epoxy resins[J]. Green Chemistry, 2021, 23(17): 6566-6575. |
47 | LI Xu, WANG Zhi, HAN Xianglei, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. Journal of Membrane Science, 2021, 640: 119765. |
48 | LI Shichun, WANG Zhi, YU Xingwei, et al. High-performance membranes with multi-permselectivity for CO2 separation[J]. Advanced Materials, 2012, 24(24): 3196-3200. |
49 | LI Nan, WANG Zhi, WANG Jixiao. Water-swollen carboxymethyl chitosan (CMC)/polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture[J]. Journal of Membrane Science, 2022, 642: 119946. |
50 | WONG Kar Chun, GOH P S, SUZAIMI N D, et al. Tailoring the CO2-selectivity of interfacial polymerized thin film nanocomposite membrane via the barrier effect of functionalized boron nitride[J]. Journal of Colloid and Interface Science, 2021, 603: 810-821. |
51 | NIU Yuhui, CHEN Yuhao, BAO Shanshan, et al. Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance[J]. Separation and Purification Technology, 2022, 293: 121035. |
52 | SHI Yanshu, LIANG Jiachen, BABU SHRESTHA B, et al. Enhancing the CO2 plasticization resistance of thin polymeric membranes by designing Metal-polymer complexes[J]. Separation and Purification Technology, 2022, 289: 120699. |
53 | ZHU Bin, JIANG Xu, HE Shanshan, et al. Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture[J]. Journal of Materials Chemistry A, 2020, 8(46): 24233-24252. |
54 | HUANG Liang, LIU Junyi, LIN Haiqing. Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability[J]. Journal of Membrane Science, 2020, 610: 118253. |
55 | MONDAL P, BEHERA P K, SINGHA N K. Macromolecular engineering in functional polymers via ‘click chemistry’ using triazolinedione derivatives[J]. Progress in Polymer Science, 2021, 113: 101343. |
56 | SHAO Lu, QUAN Shuai, CHENG Xiquan, et al. Developing cross-linked poly(ethylene oxide) membrane by the novel reaction system for H2 purification[J]. International Journal of Hydrogen Energy, 2013, 38(12): 5122-5132. |
57 | LI Songwei, JIANG Xu, YANG Qian, et al. Effects of amino functionalized polyhedral oligomeric silsesquioxanes on cross-linked poly(ethylene oxide) membranes for highly-efficient CO2 separation[J]. Chemical Engineering Research and Design, 2017, 122: 280-288. |
58 | LI Songwei, JIANG Xu, YANG Xiaobin, et al. Nanoporous framework “reservoir” maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture[J]. Journal of Membrane Science, 2019, 570/571: 278-285. |
59 | GUO Shiwei, WAN Yinhua, CHEN Xiangrong, et al. Loose nanofiltration membrane custom-tailored for resource recovery[J]. Chemical Engineering Journal, 2021, 409: 127376. |
60 | HE Shanshan, ZHU Bin, LI Songwei, et al. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design[J]. Separation and Purification Technology, 2022, 284: 120277. |
61 | WANG Zhenggong, SHEN Qin, LIANG Jiachen, et al. Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance[J]. Separation and Purification Technology, 2020, 233: 116008. |
62 | ZHOU Fanglei, TIEN Huynh Ngoc, DONG Qiaobei, et al. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture[J]. Journal of Membrane Science, 2019, 573: 184-191. |
63 | WU Wufeng, LI Zhanjun, CHEN Yu, et al. Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture[J]. Environmental Science & Technology, 2019, 53(7): 3764-3772. |
64 | SANDRU M, SANDRU E M, INGRAM W F, et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes[J]. Science, 2022, 376(6588): 90-94. |
65 | COMESANA-GANDARA B, CHEN Jie, BEZZU C G, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy & Environmental Science, 2019, 12(9): 2733-2740. |
66 | TIEN-BINH N, RODRIGUE D, KALIAGUINE S. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438. |
67 | JIANG Xu, LI Songwei, HE Shanshan, et al. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture[J]. Journal of Materials Chemistry A, 2018, 6(31): 15064-15073. |
68 | WANG Bo, SHENG Menglong, XU Jiayou, et al. Recent advances of gas transport channels constructed with different dimensional nanomaterials in mixed-matrix membranes for CO2 separation[J]. Small Methods, 2020, 4(3): 1900749. |
69 | PARK Chae-Young, KONG Chang-In, KIM Eun-Young, et al. High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment[J]. Chemical Engineering Journal, 2023, 455: 140883. |
70 | ZHAO Quan, LIAN Shaohan, LI Run, et al. Architecting MOFs-based mixed matrix membrane for efficient CO2 separation: Ameliorating strategies toward non-ideal interface[J]. Chemical Engineering Journal, 2022, 443: 136290. |
71 | PU Yunchuan, YANG Ziqi, WEE V, et al. Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations[J]. Journal of Membrane Science, 2022, 641: 119912. |
72 | ZHENG Wenji, WANG Dongyue, RUAN Xuehua, et al. Pore engineering of MOFs through in situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes[J]. Journal of Membrane Science, 2022, 661: 120882. |
73 | ZHANG Xiaoxia, RONG Meng, QIN Peiyong, et al. PEO-based CO2-philic mixed matrix membranes compromising N-rich ultramicroporous polyaminals for superior CO2 capture[J]. Journal of Membrane Science, 2022, 644: 120111. |
74 | PRASAD B, MANDAL B. Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 419-429. |
75 | JANAKIRAM S, YU Xinyi, ANSALONI L, et al. Manipulation of fibril surfaces in nanocellulose-based facilitated transport membranes for enhanced CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33302-33313. |
76 | CHEN Xiuling, ZHANG Zhiguang, WU Lei, et al. Hydrogen bonding-induced 6FDA-DABA/TB polymer blends for high performance gas separation membranes[J]. Journal of Membrane Science, 2022, 655: 120575. |
77 | CHUAH Chong Yang, LEE Junghyun, BAO Yueping, et al. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation[J]. Journal of Membrane Science, 2021, 622: 119031. |
78 | HOU Mengjie, QI Wenbo, LI Lin, et al. Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors[J]. Journal of Membrane Science, 2021, 635: 119541. |
79 | GOUVEIA A S L, BUMENN E, ROHTLAID K, et al. Ionic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation[J]. Separation and Purification Technology, 2021, 274: 118437. |
80 | MIN Hyo Jun, KIM Young Jun, KANG Miso, et al. Crystalline elastomeric block copolymer/ionic liquid membranes with enhanced mechanical strength and gas separation properties[J]. Journal of Membrane Science, 2022, 660: 120837. |
81 | YIN Jian, ZHANG Chenchen, YU Yunfei, et al. Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved CO2 capture performance[J]. Journal of Membrane Science, 2020, 593: 117405. |
82 | LI Xuyang, JIAO Chengli, ZHANG Xiaoqian, et al. Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation[J]. Journal of Membrane Science, 2023, 666: 121165. |
83 | LI Nan, WANG Zhi, WANG Jixiao. Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD)/polyamide (PA) membranes for CO2 separation[J]. Journal of Membrane Science, 2023, 668: 121211. |
84 | GUIVER M D, YAHIA M, DAL-CIN M M, et al. Gas transport in a polymer of intrinsic microporosity (PIM-1) substituted with pseudo-ionic liquid tetrazole-type structures[J]. Macromolecules, 2020, 53(20): 8951-8959. |
85 | YAN Zhikun, ZHANG Mengyao, SHI Feng, et al. Enhanced CO2 separation in membranes with anion-cation dual pathways[J]. Journal of CO2 Utilization, 2020, 38: 355-365. |
86 | KIM Ki Jung, CHAE Yunmi, AN Seong Jin, et al. Microphase-separated morphology controlled polyimide graft copolymer membranes for CO2 separation[J]. Separation and Purification Technology, 2023, 304: 122315. |
87 | ZHANG Xinru, REN Xiaofeng, WANG Yonghonget al. ZIF-8@NENP-NH2 embedded mixed matrix composite membranes utilized as CO2 capture[J]. Separation and Purification Technology, 2022, 303: 122195. |
88 | YUAN Ye, QIAO Zhihua, XU Jiayou, et al. Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels[J]. Journal of Membrane Science, 2021, 620: 118923. |
89 | WANG Bo, XU Jiayou, WANG Jixiao, et al. High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities[J]. Journal of Membrane Science, 2021, 625: 119175. |
90 | LI Ning, MA Chao, YE Mao, et al. Mechanochemical synthesized amino-functionalized ultramicroporous ZIF based mixed-matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2023, 680: 121733. |
[1] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
[2] | 赵国珂, 张杨, 刘轶群. 膜法分离一/二价阳离子的研究进展[J]. 化工进展, 2024, 43(3): 1363-1373. |
[3] | 姚福春, 毕莹莹, 唐晨, 杜明辉, 李泽莹, 张耀宗, 孙晓明. 中空纤维膜臭氧接触式反应器传质机理分析[J]. 化工进展, 2024, 43(2): 1089-1097. |
[4] | 孙宏军, 李腾, 李金霞, 丁红兵. 基于Kelvin-Helmholtz不稳定性和界面剪切作用的扰动波高预测模型[J]. 化工进展, 2024, 43(2): 609-618. |
[5] | 丁红兵, 张盼盼, 陈政奇, 王世伟, 梁真馨, 孙宏军. 超音速旋流分离器湿气出口段液膜测量[J]. 化工进展, 2024, 43(2): 667-679. |
[6] | 盛稳, 余波, 郭晗, 周怀春. 基于横向剪切干涉系统的液膜厚度分布检测[J]. 化工进展, 2024, 43(2): 743-751. |
[7] | 张瑞凯, 张会书, 郑龙云, 曾爱武. CO2吸收过程中气相分压对Rayleigh对流传质特性的影响[J]. 化工进展, 2024, 43(2): 913-924. |
[8] | 何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000. |
[9] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[10] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[11] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[12] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[13] | 容凡丁, 丁泽相, 曹义风, 陈俐吭, 杨柳, 申福星, 杨启炜, 鲍宗必. 离子液体强化不饱和键差异化合物分离的研究进展[J]. 化工进展, 2024, 43(1): 198-214. |
[14] | 张梁, 马骥, 贺高红, 姜晓滨, 肖武. 膜调控的头孢呋辛钠溶析-冷却耦合结晶成核介稳区测定及分析[J]. 化工进展, 2024, 43(1): 260-268. |
[15] | 钟丁磊, 黄铎, 应翔, 邱守添, 汪勇. 熔纺-选择性溶胀制备嵌段共聚物多通道中空纤维膜[J]. 化工进展, 2024, 43(1): 269-278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |