化工进展 ›› 2024, Vol. 43 ›› Issue (2): 984-1000.DOI: 10.16085/j.issn.1000-6613.2023-0288
何兰1(), 高助威2(), 亓欣雨2, 李成欣2, 王世豪2, 刘钟馨3,4
收稿日期:
2023-02-28
修回日期:
2023-04-20
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
高助威
作者简介:
何兰(1999—),女,硕士研究生,研究方向为油水分离。E-mail:helan857857@163.com。
基金资助:
HE Lan1(), GAO Zhuwei2(), QI Xinyu2, LI Chengxin2, WANG Shihao2, LIU Zhongxin3,4
Received:
2023-02-28
Revised:
2023-04-20
Online:
2024-02-25
Published:
2024-03-07
Contact:
GAO Zhuwei
摘要:
海上溢油和工业油污泄漏频发,导致水体受到严重的污染破坏。随着生态文明建设的不断推进,为使受油污染的水体得到高效的清洁保护,各种油水分离材料和方法应运而生。其中,三聚氰胺海绵具有独特的三维柔性结构以及其他优异的特性,使用不同的方法对其进行疏水改性后被广泛应用于油水分离领域。本文概述了超润湿性表面油水分离的机理,讨论了三聚氰胺海绵在油水分离领域的研究进展,总结了近几年三聚氰胺海绵疏水改性的材料与方法以及改性后的一些特殊性质,如磁性、耐腐蚀性等。同时对各种材料与方法进行了分析评价,并对疏水改性三聚氰胺海绵在油水分离领域的发展方向进行了展望,为推动低成本、高性能三聚氰胺海绵疏水改性技术在含油废水处理中的应用提供了参考。
中图分类号:
何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000.
HE Lan, GAO Zhuwei, QI Xinyu, LI Chengxin, WANG Shihao, LIU Zhongxin. Research progress in hydrophobic modification of melamine sponge and its application in oil-water separation field[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 984-1000.
改性材料 | 改性方法 | 接触角/(°) | 油水混合物的种类 | 吸收容量/g·g-1 | 分离效率/% | 参考文献 |
---|---|---|---|---|---|---|
活性炭/还原氧化石墨烯/聚二甲基硅氧烷 | 浸涂 | 164 | 油类/有机溶剂 | 120 | >99 | [ |
丝素蛋白-氧化石墨烯 | 浸渍 | 130 | 油类 | 76 | 93 | [ |
高岭石/氧化石墨烯 | 涂覆 | 152.3 | 油类/有机溶剂 | — | >95 | [ |
六水合硝酸镁/硝酸铝九水合物/十二烷基硫酸钠 | 原位改性 | 163.2 | 乳状液 | 70.5~137.2 | >95 | [ |
多巴胺/三甲氧基硅烷/NH2(CH2)11COOH | 原位改性 | >150 | 轻油/重油 | 72.7~161.3 | >98.5 | [ |
氮气 | 炭化 | 120~140 | 溶剂/油类 | 90~200 | 99.5 | [ |
氟烷基硅烷/Fe3O4 | 涂覆/浸涂 | >150 | 油类/有机溶剂 | 59~77 | — | [ |
多巴胺/二乙基三胺/正十二烷硫醇 | 化学修饰 | >150 | 油类/有机溶剂 | >70 | 99.52 | [ |
磁性纳米粒子 | 化学气相沉积 | 151~156 | 油类/有机溶剂 | 39.8~78.7 | — | [ |
多巴胺/Fe3O4/Ag纳米粒子 | 化学修饰 | 156.3 | 油类/有机溶剂 | 55.9~99.6 | 97.3 | [ |
Fe3O4/生物苯并𫫇嗪/长链脂族胺 | 浸涂 | 152 | 油类 | 65.8~136.2 | — | [ |
Ag纳米颗粒/多巴胺 | 原位改性 | 155.9 | 油类/有机溶剂 | (32.5±1.1)~(108.1±1.8) | 95.8 | [ |
表1 三聚氰胺海绵疏水改性的材料、方法与改性后的接触角、分离的混合物种类、吸收容量及分离效率
改性材料 | 改性方法 | 接触角/(°) | 油水混合物的种类 | 吸收容量/g·g-1 | 分离效率/% | 参考文献 |
---|---|---|---|---|---|---|
活性炭/还原氧化石墨烯/聚二甲基硅氧烷 | 浸涂 | 164 | 油类/有机溶剂 | 120 | >99 | [ |
丝素蛋白-氧化石墨烯 | 浸渍 | 130 | 油类 | 76 | 93 | [ |
高岭石/氧化石墨烯 | 涂覆 | 152.3 | 油类/有机溶剂 | — | >95 | [ |
六水合硝酸镁/硝酸铝九水合物/十二烷基硫酸钠 | 原位改性 | 163.2 | 乳状液 | 70.5~137.2 | >95 | [ |
多巴胺/三甲氧基硅烷/NH2(CH2)11COOH | 原位改性 | >150 | 轻油/重油 | 72.7~161.3 | >98.5 | [ |
氮气 | 炭化 | 120~140 | 溶剂/油类 | 90~200 | 99.5 | [ |
氟烷基硅烷/Fe3O4 | 涂覆/浸涂 | >150 | 油类/有机溶剂 | 59~77 | — | [ |
多巴胺/二乙基三胺/正十二烷硫醇 | 化学修饰 | >150 | 油类/有机溶剂 | >70 | 99.52 | [ |
磁性纳米粒子 | 化学气相沉积 | 151~156 | 油类/有机溶剂 | 39.8~78.7 | — | [ |
多巴胺/Fe3O4/Ag纳米粒子 | 化学修饰 | 156.3 | 油类/有机溶剂 | 55.9~99.6 | 97.3 | [ |
Fe3O4/生物苯并𫫇嗪/长链脂族胺 | 浸涂 | 152 | 油类 | 65.8~136.2 | — | [ |
Ag纳米颗粒/多巴胺 | 原位改性 | 155.9 | 油类/有机溶剂 | (32.5±1.1)~(108.1±1.8) | 95.8 | [ |
1 | KIRBY Mark F, LAW Robin J. Accidental spills at sea—Risk, impact, mitigation and the need for co-ordinated post-incident monitoring[J]. Marine Pollution Bulletin, 2010, 60(6): 797-803. |
2 | BENJAMIN Dubansky, ANDREW Whitehead, MILLER Jeffrey T, et al. Multitissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulus grandis)[J]. Environmental Science & Technology, 2013, 47(10): 5074-5082. |
3 | MA Junjun, XIE Yangchun, YANG Tao, et al. Melamine foam with pH-responsive wettability for fast oil absorption and desorption[J]. Advanced Materials Interfaces, 2022, 9(10): 2102092. |
4 | SHIN Jung Hwal, Jun-Ho HEO, JEON Seunggyu, et al. Bio-inspired hollow PDMS sponge for enhanced oil-water separation[J]. Journal of Hazardous Materials, 2019, 365: 494-501. |
5 | HUETTEL Markus. Oil pollution of beaches[J]. Current Opinion in Chemical Engineering, 2022, 36: 100803. |
6 | WANG Shihao, GAO Zhuwei, QI Xinyu, et al. Eco-friendly superhydrophobic MOF-doped with cellulose acetate foam for efficient oil-water separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108521. |
7 | HUANG Xiqin, JIN Kaili, HOU Keru, et al. A weaving method to prepare double-layer Janus fabric for oil-water separation[J]. Fibers and Polymers, 2022, 23(13): 3624-3637. |
8 | 高助威, 刘钟馨, 王世豪, 等. 浅析棉布及无纺布在高效油水分离膜基底中疏水性的研究[C]//2021年海南机械科技学术论坛论文集. 海口, 2021: 91-95. |
GAO Jiwei, LIU Zhongxin, WANG Shihao, et al. A study on the hydrophobicity of cotton and non woven fabrics in high efficiency oil water separation membrane substrates[C]//Proceedings of the 2021 Hainan Machinery Science and Technology Academic Forum. Haikou, 2021: 91-95. | |
9 | BAIG Umair, FAIZAN M, WAHEED Abdul. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation[J]. Advances in Colloid and Interface Science, 2022, 303: 102635. |
10 | LI Chengxin, GAO Zhuwei, QI Xinyu, et al. Preparation and research of Mn-TiO2/Fe membrane with high efficiency light-oil/water emulsion separation[J]. Surfaces and Interfaces, 2022, 31: 101995. |
11 | MYEONG Seongjae, Chaehun LIM, KIM Seokjin, et al. High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment[J]. Korean Journal of Chemical Engineering, 2023, 40(6): 1418-1424. |
12 | Ting LYU, QI Dongming, ZHANG Dong, et al. Fabrication of recyclable multi-responsive magnetic nanoparticles for emulsified oil-water separation[J]. Journal of Cleaner Production, 2020, 255: 120293. |
13 | YI Peng, HU Huawen, SUI Weiwei, et al. Thermoresponsive polyurethane sponges with temperature-controlled superwettability for oil/water separation[J]. ACS Applied Polymer Materials, 2020, 2(5): 1764-1772. |
14 | 高助威, 李成欣, 王世豪, 等. 植物纤维素类固体废物在油水分离中的应用[C]//2021年海南机械科技学术论坛论文集. 海口, 2021: 113-119. |
GAO Zhuwei, LI Chengxin, WANG Shihao, et al. Application of plant cellulose solid waste in oil water separation[C]//Proceedings of the 2021 Hainan Machinery Science and Technology Academic Forum. Haikou, 2021: 113-119. | |
15 | ZHANG Jun, JI Keju, CHEN Jia, et al. A three-dimensional porous metal foam with selective-wettability for oil-water separation[J]. Journal of Materials Science, 2015, 50(16): 5371-5377. |
16 | SU Bin, TIAN Ye, JIANG Lei. Bioinspired interfaces with superwettability: From materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748. |
17 | FEI Yongsheng, TAN Yujin, DENG Yuyi, et al. In situ construction strategy for three-dimensional Janus cellulose aerogel with highly efficient oil-water separation performance: From hydrophobicity to asymmetric wettability[J]. Green Chemistry, 2022, 24(18): 7074-7081. |
18 | WANG Sen, WANG Xiao, SHI Xiaoyu, et al. A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation[J]. New Carbon Materials, 2021, 36(1): 189-197. |
19 | SUN Tiancheng, HAO Sue, FAN Ruiqing, et al. Hydrophobicity-adjustable MOF constructs superhydrophobic MOF-rGO aerogel for efficient oil-water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56435-56444. |
20 | YUE Jie, WEN Guochang, REN Guina, et al. Superhydrophobic self-supporting BiOBr aerogel for wastewater purification[J]. Langmuir, 2021, 37(1): 406-416. |
21 | LIU Shuai, WANG Shanshan, WANG Hui, et al. Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation[J]. Science of the Total Environment, 2021, 758: 143660. |
22 | GUO Zheng, LONG Biao, GAO Shijie, et al. Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation[J]. Journal of Hazardous Materials, 2021, 402: 123838. |
23 | BAUZA Marta, TURNES PALOMINO Gemma, PALOMINO CABELLO Carlos. MIL-100(Fe)-derived carbon sponge as high-performance material for oil/water separation[J]. Separation and Purification Technology, 2021, 257: 117951. |
24 | ZHAN Renming, ZHANG Youquan, CHEN Hao, et al. High-rate and long-life sodium-ion batteries based on sponge-like three-dimensional porous Na-rich ferric pyrophosphate cathode material[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5107-5113. |
25 | ZHU Haiguang, YANG Shun, CHEN Dongyun, et al. A robust absorbent material based on light-responsive superhydrophobic melamine sponge for oil recovery[J]. Advanced Materials Interfaces, 2016, 3(5): 1500683. |
26 | ALAVINIA Sedigheh, Ramin GHORBANI-VAGHEI. Synthesis of 3-oxadiazole-substituted imidazo[1, 2-a]pyridines by nickel immobilized on multifunctional amphiphilic porous polysulfonamide-melamine[J]. New Journal of Chemistry, 2020, 44(30): 13062-13073. |
27 | YIN Rongyang, SUN Pengfei, CHENG Lujun, et al. A three-dimensional melamine sponge modified with MnO x mixed graphitic carbon nitride for photothermal catalysis of formaldehyde[J]. Molecules, 2022, 27(16): 5216. |
28 | CHUN Youngsang, KIM Kyung Rae, KIM Hyeong Ryeol, et al. Mechanical improvement of biochar-alginate composite by using melamine sponge as support and application to Cu(Ⅱ) removal[J]. Journal of Polymers and the Environment, 2022, 30(5): 2037-2049. |
29 | LI Zhihao, GUO Zhiguang. Flexible 3D porous superhydrophobic composites for oil-water separation and organic solvent detection[J]. Materials & Design, 2020, 196: 109144. |
30 | SHI Qiandai, WANG Jing jing, CHEN Lu, et al. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application[J]. Food Research International, 2022, 151: 110847. |
31 | CHANG Chao, LIU Min, LI Lanxin, et al. Salt-rejecting rGO-coated melamine foams for high-efficiency solar desalination[J]. Journal of Materials Research, 2022, 37(1): 294-303. |
32 | ZHANG Huan, LIU Huie, CHEN Shuang, et al. Carboxymethyl cellulose modified reduced graphene oxide coated melamine sponge for efficient seawater evaporation[J]. Journal of Porous Materials, 2022, 29(6): 1807-1816. |
33 | KIM Seokjin, Chaehun LIM, KWAK Cheol Hwan, et al. Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions[J]. Journal of Industrial and Engineering Chemistry, 2023, 118: 259-267. |
34 | ZHOU Jian, ZHANG Yan, YANG Yongqiang, et al. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation[J]. Applied Surface Science, 2019, 497: 143762. |
35 | DEHINGIA Biswajit, KALITA Hemen. Facile, cost-effective and mechanically stable graphene-melamine sponge for efficient oil/water separation with enhanced recyclability[J]. Process Safety and Environmental Protection, 2023, 170: 1010-1022. |
36 | LI Lei, CHEN Rui, WEN Fengyu, et al. Eco‐friendly and facile modified superhydrophobic melamine sponge by molybdenum sulfide for oil/water separation[J]. Journal of Applied Polymer Science, 2023.3: e53875. |
37 | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
38 | BIXLER Gregory D, Bhushan Bharat. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow[J]. Nanoscale, 2014, 6(1): 76-96. |
39 | KUMAR Manish, BHARDWAJ Rajneesh. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof[J]. Scientific Reports, 2020, 10: 935. |
40 | GOODWYN Pablo Perez, MAEZONO Yasunori, HOSODA Naoe, et al. Waterproof and translucent wings at the same time: Problems and solutions in butterflies[J]. Naturwissenschaften, 2009, 96(7): 781-787. |
41 | GAO Xuefeng, JIANG Lei. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
42 | LIU Xueli, ZHOU Jie, XUE Zhongxin, et al. Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity[J]. Advanced Materials, 2012, 24(25): 3401-3405. |
43 | FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
44 | FENG Lin, ZHANG Yanan, XI Jinming, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24(8): 4114-4119. |
45 | YOUNG Thomas. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
46 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
47 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
48 | PHAM Viet Hung, DICKERSON James H. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14181-14188. |
49 | BAIG Nadeem, ALGHUNAIMI Fahd I, DOSSARY Hind S, et al. Superhydrophobic and superoleophilic carbon nanofiber grafted polyurethane for oil-water separation[J]. Process Safety and Environmental Protection, 2019, 123: 327-334. |
50 | YANG Shaolin, LI Jinze, ZHEN Cheng, et al. Graphene-based melamine sponges with reverse wettability for oil/water separation through absorption and filtration[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107543. |
51 | WANG Shihao, GAO Zhuwei, QI Xinyu, et al. Eco-friendly graphene-doped cellulose acetate superhydrophobic polymer for efficient oil-water separation[J]. Journal of Water Process Engineering, 2022, 49: 103098. |
52 | VENKATESAN Natesan, YUVARAJ Palani, FATHIMA Nishter Nishad. Fabrication of non-fluorinated superhydrophobic and flame retardant porous material for efficient oil/water separation[J]. Materials Chemistry and Physics, 2022, 286: 126190. |
53 | LIAO Chenchen, XIA Yurou, A Yinaer Nu KESHEN, et al. A facile and green construction of biomimetic, fluorine-free and superhydrophobic melamine sponge with magnetic-driven function for efficient oil-water separation and oil absorption[J]. Journal of Bionic Engineering, 2021, 18(5): 1168-1178. |
54 | XIAO Fei, ZHANG Hongxia, WU Tianzhao, et al. Superhydrophobic/superlipophilic interface layer for oil-water separation[J]. Process Safety and Environmental Protection, 2022, 161: 13-21. |
55 | YANG Yu, DENG Yonghong, TONG Zhen, et al. Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents[J]. Journal of Materials Chemistry A, 2014, 2(26): 9994-9999. |
56 | CHEN Xuemei, WEIBEL Justin A, GARIMELLA Suresh V. Continuous oil-water separation using polydimethylsiloxane-functionalized melamine sponge[J]. Industrial & Engineering Chemistry Research, 2016, 55(12): 3596-3602. |
57 | WANG Hui, ZHAO Qi, ZHANG Kuikui, et al. Superhydrophobic nanodiamond-functionalized melamine sponge for oil/water separation[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(37): 11304-11313. |
58 | NAZHIPKYZY Meruyert, ASSYLKHANOVA Dana, ARAYLIM Nurgain, et al. Effective separation of petroleum oil-water mixtures via flexible and re-usable hydrophobic soot-coated melamine sponge[J]. Journal of Water Process Engineering, 2022, 49: 103032. |
59 | QIANG Fei, HU Lili, GONG Lixiu, et al. Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states[J]. Chemical Engineering Journal, 2018, 334: 2154-2166. |
60 | YE Xinli, CHEN Zhaofeng, AI Sufen, et al. Effect of pyrolysis temperature on compression and thermal properties of melamine-derived carbon foam[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104619. |
61 | DUMAN Osman, DIKER Ceren Özcan, Sibel TUNÇ. Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105093. |
62 | CHOI Yunho, KIM Yong Tae, YOU Jae Bem, et al. An efficient isolation of foodborne pathogen using surface-modified porous sponge[J]. Food Chemistry, 2019, 270: 445-451. |
63 | Junwei LYU, WANG Bin, MA Qi, et al. Preparation of superhydrophobic melamine sponges decorated with polysiloxane nanotubes by plasma enhanced chemical vapor deposition (PECVD) method for oil/water separation[J]. Materials Research Express, 2018, 5(7): 075025. |
64 | ZANG Yu, SUN Hong, JING Boyu, et al. Efficient superhydrophobic and flame retardant oil/water separation conjugated microporous polymer-coated sponges[J]. Journal of Materials Science, 2023, 58(6): 2935-2949. |
65 | WANG Zhiheng, DAI Yimin, FANG Chengqian, et al. A bio-inspired green method to fabricate pH-responsive sponge with switchable surface wettability for multitasking and effective oil-water separation[J]. Applied Surface Science, 2022, 602: 154192. |
66 | DU Yongxu, LIU Libin, XIANG Yu, et al. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent[J]. Journal of Power Sources, 2018, 379: 240-248. |
67 | ZHANG Wenchao, CAMINO Giovanni, YANG Rongjie. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance[J]. Progress in Polymer Science, 2017, 67: 77-125. |
68 | TAN Jinglin, ZHANG Yuefei. Trisiloxane functionalized melamine sponges for oil water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634: 127972. |
69 | LI Zengtian, HE Fuan, LIN Bo. Preparation of magnetic superhydrophobic melamine sponge for oil-water separation[J]. Powder Technology, 2019, 345: 571-579. |
70 | ZHANG Ruilong, ZHOU Zhiping, GE Wenna, et al. Robust, fluorine-free and superhydrophobic composite melamine sponge modified with dual silanized SiO2 microspheres for oil-water separation[J]. Chinese Journal of Chemical Engineering, 2021, 33: 50-60. |
71 | ZHENG Ke, LI Wenxi, ZHOU Shaoqi, et al. Facile one-step fabrication of superhydrophobic melamine sponges by poly(phenol-amine) modification method for effective oil-water separation[J]. Journal of Hazardous Materials, 2022, 429: 128348. |
72 | CHUNG Chih-Hsiang, LIU Wanchen, HONG Jinlong. Superhydrophobic melamine sponge modified by cross-linked urea network as recyclable oil absorbent materials[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8449-8459. |
73 | DASHAIRYA Love, GOPINATH M, SAHA Partha. Synergistic effect of Zr/Cl dual-ions mediated pyrrole polymerization and development of superhydrophobic melamine sponges for oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599: 124877. |
74 | GONG Li, ZHU Hongxia, WU Wenhao, et al. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions[J]. Journal of Hazardous Materials, 2022, 425: 127980. |
75 | YANG Fan, HAO Longbin, ZHU Yanan, et al. Preparation of graphene modified melamine sponge and solar-assisted cleanup of heavy oil spills[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107779. |
76 | LI Zhangdi, LIN Zhipeng, TIAN Qiong, et al. Solar-heating superhydrophobic modified melamine sponge for efficient recovery of viscous crude oil[J]. Journal of Hazardous Materials, 2022, 440: 129799. |
77 | WANG Xiaotong, HAN Zhongqiang, LIU Yuan, et al. Micro-nano surface structure construction and hydrophobic modification to prepare efficient oil-water separation melamine formaldehyde foam[J]. Applied Surface Science, 2020, 505: 144577. |
78 | LIU Yingying, WANG Xin, FENG Shengyu. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials, 2019, 29(29): 1902488. |
79 | CHEN Teng, ZHOU Shuai, HU Zhenhua, et al. A multifunctional superhydrophobic melamine sponge decorated with Fe3O4/Ag nanocomposites for high efficient oil-water separation and antibacterial application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127041. |
80 | YANG Mengmeng, CHEN Zhaofeng, YANG Lixia, et al. Superhydrophobic/superoleophilic modified melamine sponge for oil/water separation[J]. Ceramics International, 2023, 49(7): 11544-11551. |
81 | PENG Min, CHEN Guiqiu, ZENG Guangming, et al. Superhydrophobic kaolinite modified graphene oxide-melamine sponge with excellent properties for oil-water separation[J]. Applied Clay Science, 2018, 163: 63-71. |
82 | HE Ruijie, LIU Shuaizhuo, WANG Rui, et al. In situ modification of melamine sponge by MgAl-LDH with super-hydrophobicity and excellent harsh environment tolerance for high flux emulsion separation[J]. Separation and Purification Technology, 2022, 291: 120916. |
83 | STOLZ Aude, LE FLOCH Sylvie, REINERT Laurence, et al. Melamine-derived carbon sponges for oil-water separation[J]. Carbon, 2016, 107: 198-208. |
84 | LI Zengtian, WU Haotong, CHEN Wanyi, et al. Preparation of magnetic superhydrophobic melamine sponges for effective oil-water separation[J]. Separation and Purification Technology, 2019, 212: 40-50. |
85 | ZHU Yongfei, DU Yonggang, SU Junming, et al. Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation[J]. Separation and Purification Technology, 2021, 275: 119130. |
86 | CHEN Teng, LIU Zhiyu, ZHANG Kai, et al. Mussel-inspired Ag NPs immobilized on melamine sponge for reduction of 4-nitrophenol, antibacterial applications and its superhydrophobic derivative for oil–water separation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50539-50551. |
87 | QI Xinyu, GAO Zhuwei, LI Chengxin, et al. Underwater superoleophobic copper mesh coated with block nano protrusion hierarchical structure for efficient oil/water separation[J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 450-460. |
88 | Minh-Thao NGUYEN-DINH, Thanh Son BUI, LEE Byeong-Kyu, et al. Superhydrophobic MS@CuO@SA sponge for oil/water separation with excellent durability and reusability[J]. Chemosphere, 2022, 292: 133328. |
89 | DONG Hongyu, ZHAN Yingqing, SUN Ao, et al. Magnetically responsive and durable super-hydrophobic melamine sponge material[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662: 130933. |
90 | XIANG Tengfei, CHEN Depeng, Zhong LYU, et al. Robust superhydrophobic coating with superior corrosion resistance[J]. Journal of Alloys and Compounds, 2019, 798: 320-325. |
91 | LIU Xianfeng, LIU Zhong, WANG Xueyan, et al. Superhydrophobic nanofibrous sponge with hierarchically layered structure for efficient harsh environmental oil-water separation[J]. Journal of Hazardous Materials, 2022, 440: 129790. |
92 | TAPIA Jesús I, Elizabeth ALVARADO-GÓMEZ, ENCINAS Armando. Non-expensive hydrophobic and magnetic melamine sponges for the removal of hydrocarbons and oils from water[J]. Separation and Purification Technology, 2019, 222: 221-229. |
93 | YIN Zichao, LI Yuhang, SONG Tianwen, et al. An environmentally benign approach to prepare superhydrophobic magnetic melamine sponge for effective oil/water separation[J]. Separation and Purification Technology, 2020, 236: 116308. |
94 | CHABOT Victor, HIGGINS Drew, YU Aiping, et al. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment[J]. Energy & Environmental Science, 2014, 7(5): 1564-1596. |
95 | WANG Kai, WANG Ding yang, WANG Meng zhu, et al. Functional photothermal sponges for efficient solar steam generation and accelerated cleaning of viscous crude-oil spill[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110203. |
96 | WANG Yi, ZHOU Lihua, LUO Xiaoshan, et al. Solar-heated graphene sponge for high-efficiency clean-up of viscous crude oil spill[J]. Journal of Cleaner Production, 2019, 230: 995-1002. |
97 | YAN Yuanyang, HE Miao, ZHOU Peizhang, et al. Durable superhydrophobic sponge for all-weather cleanup of viscous crude oil by electrothermal and photothermal effects[J]. Separation and Purification Technology, 2023, 304: 122374. |
98 | YU Jiacheng, CAO Changqian, LIU Shuo, et al. Eco-friendly magneto-photothermal sponge for the fast recovery of highly viscous crude oil spill[J]. Separation and Purification Technology, 2022, 298: 121668. |
99 | GUAN Yihao, WANG Zhining, BAO Mutai, et al. Multi-energies assisted and all-weather recovery of crude oil by superhydrophobic melamine sponge[J]. Journal of Hazardous Materials, 2023, 443: 130131. |
[1] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[2] | 王百祥, 张惠宁, 彭耀清, 任慧敏. 气相吸附制备仿生超疏水棉织物及其油水分离性能[J]. 化工进展, 2023, 42(12): 6490-6497. |
[3] | 李冬燕, 周剑, 江倩, 苗凯, 倪诗莹, 邹栋. 碳化硅陶瓷膜的制备及其应用进展[J]. 化工进展, 2023, 42(12): 6399-6408. |
[4] | 路涛, 胡嘉怡, 徐成, 胡鑫琳, 郭庆阳, 李朦. 超疏水海绵的简易制备及其高效油/水分离性能[J]. 化工进展, 2023, 42(10): 5353-5362. |
[5] | 刘战剑, 杨金月, 景境, 张曦光, 汪怀远. 三维超浸润多孔材料在油水分离中的研究进展[J]. 化工进展, 2023, 42(1): 310-320. |
[6] | 叶泽权, 吴青芸, 顾林. 纤维素基油水分离材料研究进展[J]. 化工进展, 2022, 41(6): 3038-3050. |
[7] | 郑进宝, 李琛. 淀粉基包装材料疏水性改善研究进展[J]. 化工进展, 2022, 41(6): 3089-3102. |
[8] | 辛玥, 宋爽, 张芝蕾, 张庆霞, 吕中, 杨浩. 鳞片状BiVO4不锈钢网涂层的制备及其在油水分离中的应用[J]. 化工进展, 2021, 40(6): 3536-3542. |
[9] | 闫红芹, 郑文瑞, 张桂玉, 王誉, 王梦然, 朱敏慧. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5): 2893-2899. |
[10] | 敬加强, 黄婉妮, 宋学华, 罗佳琪, 宋扬, 戢慧, 罗遒汉, 王思汗. 基于Fluent的井下油水分离和润滑过程中新型润滑元件设计分析[J]. 化工进展, 2021, 40(11): 5929-5938. |
[11] | 张璐, 孙金鹏, 俞青源, 李如燕, 张云浩, 王文俊. 木粉疏水改性对HDPE基木塑复合材料性能的影响[J]. 化工进展, 2020, 39(9): 3487-3493. |
[12] | 马杨, 王佳铭, 贺高红, 阮雪华. 微孔膜法油水分离——表面性质及微观结构的研究进展[J]. 化工进展, 2020, 39(6): 2145-2155. |
[13] | 黄斌, 王晨, 傅程, 付思强, 黄立凯, 张伟森. 三元复合驱采出水处理研究进展[J]. 化工进展, 2020, 39(10): 4238-4247. |
[14] | 杨玉洁, 陈雯雯, 张倩, 李蕾, 林松, 王在谦, 李望良. 聚结技术及其乳化油水分离性能[J]. 化工进展, 2019, 38(s1): 10-18. |
[15] | 郭晶,张光华,张万斌,朱军峰,吴江,杜伦. 烷基烯酮二聚体对褐煤疏水改性及成浆性能的影响[J]. 化工进展, 2019, 38(10): 4705-4711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |