[1] 桑义敏, 云昊, 韩严和, 等. 污水中油滴聚结机理与材料聚结技术研究进展[J]. 工业水处理, 2016, 36(10):6-10. SANG Yimin, YUN Hao, HAN Yanhe, et al. Progress in the research on coalescence mechanism of oil drops in wastewater and material coalescence technology[J]. Industrial Water Treatment, 2016, 36(10):6-10. [2] HU D, ZHANG Q, YANG C, et al. Process diagnosis of coalescence separation of oil-in-water emulsions-two case studies[J]. Journal of Dispersion Science and Technology, 2019, 40(5):745-755. [3] 段传虎. 刍议油水分离中聚结分离技术的应用[J]. 科技风, 2018(10):124. DUAN Chuanhu. Discussion on the application of coalescence separation technology in oil-water separation[J]. Science and Technology, 2018(10):124. [4] 蒋昊琳, 杨明全, 张振超, 等. 含油污水聚结除油研究进展[J]. 能源化工, 2016, 37(2):27-31. JIANG Haolin, YANG Mingquan, ZHANG Zhenchao, et al. Research progress for coalescent removing oil from oily sewage[J]. Energy Chemical Industry, 2016, 37(2):27-31. [5] 余晓月. 非尺寸因素对聚结板内油水分离性能的影响研究[D]. 西安:西安石油大学, 2016. YU X Y. Study on the effect of non-dimensional factor on the oil-water separation performance of the corrugated plate[D]. Xi'an:Xi'an Shiyou University, 2016. [6] 刘丽艳, 侯立飞, 谭蔚, 等. 油水乳状液中水滴在疏水纤维丝上的聚结实验研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(3):271-277. LIU Liyan, HOU Lifei, TAN Wei, et al. Coalescence of water droplets on hydrophobic fibers in water-in-oil emulsion[J]. Journal of Tianjin University(Science and Technology), 2018, 51(3):271-277. [7] GADHAVE A D, MEHDIZADEH S N, CHASE G G. Effect of pore size and wettability of multilayered coalescing filters on water-in-ULSD coalescence[J]. Separation and Purification Technology, 2019, 221:236-248. [8] LUO X, HUANG X, YAN H, et al. An experimental study on the coalescence behavior of oil droplet in ASP solution[J]. Separation and Purification Technology, 2018, 203:152-158. [9] 王志华, 柏晔, 娄玉华, 等. 二元复合驱采出液乳化行为及破乳影响因素[J]. 石油化工高等学校学报, 2018, 31(6):33-40. WANG Zhihua, BAI Ye, LOU Yuhua, et al. Emulsification and demulsification of produced liquid in surfactant/polymer combination flooding[J]. Journal of Petrochemical Universities, 2018, 31(6):33-40. [10] KHAN J A, AL-KAYIEM H H, ALEEM W, et al. Influence of alkali-surfactant-polymer flooding on the coalescence and sedimentation of oil/water emulsion in gravity separation[J]. Journal of Petroleum Science and Engineering, 2019, 173:640-649. [11] WANG Z, CHEN R, ZHU X, et al. Dynamic behaviors of the coalescence between two droplets with different temperatures simulated by the VOF method[J]. Applied Thermal Engineering, 2018, 131:132-140. [12] LI Y, Qin G, XIONG Z, et al. The effect of particle humidity on separation efficiency for an axial cyclone separator[J]. Advanced Powder Technology, 2019, 30(4):724-731. [13] KAMP J, KRAUME M. From single drop coalescence to droplet swarms-scale-up considering the influence of collision velocity and drop size on coalescence probability[J]. Chemical Engineering Science, 2016, 156:162-177. [14] BAHRAMI B, MOHSENPOUR S, SHAMSHIRI Noghabi H R, et al. Estimation of flow rates of individual phases in an oil-gas-water multiphase flow system using neural network approach and pressure signal analysis[J]. Flow Measurement and Instrumentation, 2019, 66:28-36. [15] LIU L, HOU L, TAN W, et al. A visible coalescence of droplets on hydrophobic and hydrophilic fibers in water-in-oil emulsion[J]. Journal of Dispersion Science and Technology, 2017, 38(12):1719-1725. [16] LI Y, GONG H, DONG M, et al. Separation of water-in-heavy oil emulsions using porous particles in a coalescence column[J]. Separation and Purification Technology, 2016, 166:148-156. [17] ZHANG Q, LI L, LI Y X, et al. Surface wetting-driven separation of surfactant-stabilized water-oil emulsions[J]. Langmuir, 2018, 34(19):5505-5516. [18] KUNDU P, KUMAR V, MISHR I M. Experimental study on flow and rheological behavior of oil-in-water emulsions in unconsolidated porous media:effect of particle size and phase volume fractions[J]. Powder Technology, 2019, 343:821-833. [19] 杨琳. 基于聚结构件的油水分离器工艺参数优化研究[D]. 西安:西安石油大学, 2018. YANG Lin. Study on optimization of process parameters of oil-water separator based on coalescence separation[D]. Xi'an:Xi'an Shiyou University, 2018. [20] MINO Y, HASEGAWA A, SHINTO H, et al. Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter:effects of filter structure[J]. Chemical Engineering Science, 2018, 177:210-217. [21] YU Y, LIU M, HUANG H, et al. Low cost fabrication of polypropylene fiber composite membrane with excellent mechanical, superhydrophilic, antifouling and antibacterical properties for effective oil-in-water emulsion separation[J]. Reactive and Functional Polymers, 2019, 142:15-24. [22] SONG Y Z, KONG X, YIN X, et al. Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017, 522:585-592. [23] SUN Y, YANG Z, LI L, et al. Facile preparation of isotactic polypropylene microporous membranes with bioinspired hierarchical morphology for nano-scale water-in-oil emulsion separation[J]. Journal of Membrane Science, 2019, 581:224-235. [24] DING L P, GAO J, CHUNG T S. Schiff base reaction assisted one-step self-assembly method for efficient gravity-driven oil-water emulsion separation[J]. Separation and Purification Technology, 2019, 213:437-446. [25] 徐卜琴, 赵宗倩, 徐桂龙, 等. 超疏水超亲油玻璃纤维过滤膜的制备及其乳化水分离效率[J]. 硅酸盐学报, 2018, 46(8):1173-1177. XU Puqin, ZHAO Zongqian, XU Guilong, et al. Preparation of superhydrophobic and superoleophilic glass-fiber membrane and its emulsified water separation efficiency[J]. Journal of the Chinese Ceramic Society, 2018, 46(8):1173-1177. [26] PHIRI I, EUM K Y, KIM J W, et al. Simultaneous complementary oil-water separation and water desalination using functionalized woven glass fiber membranes[J]. Journal of Industrial and Engineering Chemistry, 2019, 73:78-86. [27] ROSTAMI A, SHARIFNIA S. Fabrication of robust and durable superhydrophobic fiberglass fabrics for oil-water separation based on self-assembly of novel N-TESPO and N-TESPS reagents[J]. Journal of Materials Chemistry A, 2017, 5(2):680-688. [28] LIX Y, HU D, HUANG K, et al. Hierarchical rough surfaces formed by LBL self-assembly for oil-water separation[J]. Journal of Materials Chemistry A, 2014, 2(30):11830-11838. [29] CHEN J, ZHOU Y, ZHOU C, et al. A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation[J]. Chemical Engineering Journal, 2019, 370:1218-1227. [30] LIU M M, LI J, HOU Y Y, et al. Inorganic adhesives for robust superwetting surfaces[J]. ACS Nano, 2017, 11(1):1113-1119. [31] JIANG L, TANG Z G, Park-Lee K J, et al. Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation[J]. Separation and Purification Technology, 2017, 184:394-403. [32] 杨啸天, 帅茜, 罗艳梅, 等. 聚二甲基硅氧烷/微纳米银/聚多巴胺修饰的超疏水海绵的制备和应用[J]. 应用化学, 2015, 32(6):726-732. YANG Xiaotian, SHUAI Qian, LUO Yanmei, et al. Fabrication and application of the superhydrophobic sponge modified with poly (dimethylsiloxane)/silver micro/nano-particles/polydopamine[J]. Chinese Journal of Applied Chemistry, 2015, 32(6):726-732. [33] WAN Z, LI D, JIAO Y, et al. Bifunctional MoS2 coated melamine-formaldehyde sponges for efficient oil-water separation and water-soluble dye removal[J]. Applied Materials Today, 2017, 9:551-559. [34] LI Y, ZHANG Z Z, WANG M K, et al. One-pot fabrication of nanoporous polymer decorated materials:from oil-collecting devices to high-efficiency emulsion separation[J]. Journal of Materials Chemistry A, 2017, 5(10):5077-5087. [35] YANG J B, WANG H C, TAO Z A, et al. 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism[J]. Chemical Engineering Journal, 2019, 359:149-158. [36] WANG N, DENG Z. Synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation[J]. Materials Research Bulletin, 2019, 115:19-26. [37] XU L, CHEN Y, LIU N, et al. Breathing demulsification:a three-dimensional(3D) free-standing superhydrophilic sponge[J]. ACS Applied Materials & Interfaces, 2015, 7(40):22264-22271. [38] WU Z Z, LI Y Z, ZHANG L P, et al. Thiol-ene click reaction on cellulose sponge and its application for oil/water separation[J]. RSC Advances, 2017, 7(33):20147-20151. [39] HU D, LI X Y, I L, et al. Designing high-caliber nonwoven filter mats for coalescence filtration of oil/water emulsions[J]. Separation and Purification Technology, 2015, 149:65-73. [40] LI Y X, CAO L X, HU D, et al. Uncommon wetting on a special coating and its relevance to coalescence separation of emulsified water from diesel fuel[J]. Separation and Purification Technology, 2017, 176:313-322. [41] LIU F, MA M, ZANG D, et al. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation[J]. Carbohydrate Polymers, 2014, 103:480-487. [42] DEL BLANCO M V, FISCHER E J, CABANE E. Underwater superoleophobic wood cross sections for efficient oil/water separation[J]. Advanced Materials Interfaces, 2017, 4(21):1700584. [43] ZHANG W F, LIU N, CAO Y Z, et al. Superwetting porous materials for wastewater treatment:from immiscible oil/water mixture to emulsion separation[J]. Advanced Materials Interfaces, 2017, 4(10):1700029. [44] 袁静, 廖芳芳, 郭雅妮, 等. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1):144-155. YUAN Jing, LIAO Fangfang, GUO Yani, et al. Preparation and performance of superhydrophilic and superoleophobic membrane for oil/water separation[J]. Progress In Chemistry, 2019, 31(1):144-155. [45] 屈孟男, 马利利, 何金梅, 等. 特异润湿型油水分离材料的研究进展[J]. 材料导报, 2017, 31(19):152-161. QU Mengnan, MA Lili, HE Jinmei, et al. Research progress of specific wetting oil-water separation materials[J]. Materials Reports, 2017, 31(19):152-161. [46] LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation:a comprehensive review[J]. Progress in Polymer Science, 2018, 87:1-33. [47] KONG T, LUO G, ZHAO Y, et al. Bioinspired superwettability micro/nanoarchitectures:fabrications and applications[J]. Advanced Functional Materials, 2019, 29(11):1808012. [48] 佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, doi:10.15541/jim20180591. TONG Wei, XIONG Dangsheng. Bioinspired superhydrophobic progress and recent advances of its functional application[J]. Journal of Inorganic Materials, doi:10.15541/jim20180591. [49] CAO J L, SU Y L, LI Y N, et al. Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation[J]. Journal of Membrane Science, 2018, 566:268-277. [50] LI X Y, HU D, CAO L X, et al. Sensitivity of coalescence separation of oil-water emulsions using stainless steel felt enabled by LBL self-assembly and CVD[J]. RSC Advances, 2015, 5(87):71345-71354. [51] JOO M, SHIN J, KIM J, et al. One-step synthesis of cross-linked ionic polymer thin films in vapor phase and its application to an oil/water separation membrane[J]. Journal of the American Chemical Society, 2017, 139(6):2329-2337. [52] WEN N, MIAO X R, YANG X J, et al. An alternative fabrication of underoil superhydrophobic or underwater superoleophobic stainless steel meshes for oil-water separation:originating from one-step vapor deposition of polydimethylsiloxane[J]. Separation and Purification Technology, 2018, 204:116-126. [53] ZAREEI POUR F, KARIMI H, MADAD AVARGANI V. Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichlorodimethylsilane for water-oil separation[J]. Polyhedron, 2019, 159:54-63. [54] FENG X, LI J, ZHANG X, et al. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare[J]. Journal of Controlled Release, 2019, 302:19-41. [55] LIAO Y, LOH C H, TIAN M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment:fabrication, modification and applications[J]. Progress in Polymer Science, 2018, 77:69-94. [56] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers:methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415. [57] Hou L L, Wang N, Wu J, et al. Bioinspired superwettability electrospun micro/nanofibers and their applications[J]. Advanced Functional Materials, 2018, 28(49):1801114. [58] GE J L, ZONG D D, JIN Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials, 2018, 28(10):1705051. [59] WU J D, DING Y J, WANG J Q, et al. Facile fabrication of nanofiber-and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2018, 6(16):7014-7020. [60] HUANG Y, XIAO C F, HUANG Q L, et al. Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation[J]. Journal of Membrane Science, 2018, 568:87-96. [61] 黄卫星, 何雄元, 邓朝俊, 等. 聚结板强化油水分离过程的机理研究[J]. 工程科学与技术, 2017, 49(3):191-196. HUANG Weixing, HE Xiongyuan, DENG Chaojun, et al. Study on the intensification mechanism of oil-water separation process by using inclined plate pack[J]. Anvanced Engineering Sciences, 2017, 49(3):191-196. [62] HAN Y, HE L, LUO X, et al. A review of the recent advances in design of corrugated plate packs applied for oil-water separation[J]. Journal of Industrial and Engineering Chemistry, 2017, 53:37-50. [63] 齐玉成, 赵会军, 邵悦, 等. 波纹板聚结分离器分离效率影响因素研究[J]. 常州大学学报(自然科学版), 2016, 28(2):67-72. QI Yucheng, ZHAO Huijun, SHAO Yue, et al. On the influencing factors of separation efficiency of corrugated plate coalescing separator[J]. Journal of Changzhou University (Natural Science Edition), 2016, 28(2):67-72. [64] LUO H, YANG X, LU Z, et al. Effect of drainage layer on oil distribution and separation performance of fiber-bed coalescer[J]. Separation and Purification Technology, 2019, 218:173-180. [65] 郭骥, 姬忠礼. 苯酚浓度对亲油疏水型滤材聚结性能的影响[EB/OL]. 北京:过程工程学报, 2019[2019-07-23]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20190424.1340.002.html. GUO Ji, JI Zhongli. Influence of phenol concentration on coalescence performance of an oleophilichydrophobic filter material[J]. The Chinese Journal of Process Engineering, 2019[2019-07-23]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20190424.1340.002.html. |