化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2678-2690.DOI: 10.16085/j.issn.1000-6613.2022-1369
收稿日期:
2022-07-21
修回日期:
2022-09-03
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
成少安
作者简介:
李华华(1998—),女,硕士研究生,研究方向为厌氧氨氧化。E-mail:22027060@zju.edu.cn。
基金资助:
LI Huahua(), LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an()
Received:
2022-07-21
Revised:
2022-09-03
Online:
2023-05-10
Published:
2023-06-02
Contact:
CHENG Shao’an
摘要:
厌氧氨氧化-生物电化学耦合废水处理系统(Anammox-BES)是一种极具发展潜力的污水脱氮技术,兼有无机氮污染物和有机污染物的去除与能量回收的优势,近年来已成为研究的热点。本文总结了现有Anammox-BES的主要类型和反应机理;综述了影响Anammox-BES的主要因素,包括电极材料、电极电位、温度、pH、溶解氧、有机物和接种物等;总结了Anammox-BES的研究现状,并在脱氮性能以及能量消耗等方面与传统Anammox工艺进行了比较。大量研究结果显示,绝大部分Anammox-BES的脱氮过程为厌氧氨氧化、硝化、反硝化以及微生物产电等多种过程的耦合,系统整体脱氮效率高。然而,由于影响Anammox-BES系统性能的因素众多,并且能量回收率低,在实际废水处理方面尚未得到广泛应用。因此,在今后的研究中,需要继续开发增强厌氧氨氧化菌产电能力的技术手段,以实现废水脱氮的同时回收蕴藏于铵盐中的化学能;对于现有Anammox-BES,仍需开发具有高导电性、生物相容性以及比表面积的阳极材料,并进一步优化操作条件,以提高系统脱氮、产电性能以及稳定性。
中图分类号:
李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690.
LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690.
污水类型 | 反应器构型 | 阳/阴(参比) 电极材料 | 体积(阳-阴极室)/L | 运行 模式 | 水力停留时间/h | 进水基质浓度/mg·L-1 | COD 去除率 /% | 总氮 去除率 /% | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
COD | NH | NO | |||||||||
短程硝化出水 | UASB | 碳刷/碳刷(甘汞) | 1.2 | 序批 | 48 | 180~1180 | 90~520 | 110~680 | 24.4 | 71.9 | [ |
焚烧渗滤液 | SBR | 碳刷/碳刷(甘汞) | 4 | 序批 | — | 50~250 | 50~250 | — | 20~40 | 70±15 | [ |
垃圾渗滤液 | 双室MFC | 碳毡/碳毡 | 0.15~0.18 | 序批 | 144 | — | 约320 | 约420 | — | 约25 | [ |
垃圾渗滤液 | 双室MFC | 石墨棒/碳布 | — | 序批 | 24 | 约266 | 约120 | — | — | 94 | [ |
合成废水 | UASB | 石墨棒/碳毡 | 0.5 | 连续 | 6 | — | 140 | 210 | — | 99.1 | [ |
合成废水 | 双室管状MEC | 碳刷/碳布 | 0.37~1.12 | 连续 | 20~90 | 2000 | 500 | — | 98.2±3.3 | 94.8±7.7 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.08~0.08 | 序批 | 24 | 3000 | 50 | 50 | 80±2 | 73±2 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.14~0.14 | 序批 | 120 | — | 50 | 40 | — | 85 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.17~0.4 | 序批 | 11.5, 23 | 约750 | 约56 | — | 100 | 82.6±0.9 | [ |
合成废水 | 双室MFC | 石墨片/石墨片 | 0.03~0.03 | 序批 | — | 1200 | 500~1000 | — | 93 | 84 | [ |
合成废水 | 双室MFC | 碳纸/碳布 | 0.028~0.028 | 序批 | 48 | — | 400 | 528 | — | 84.4 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.4~0.4 | 序批 | 24 | 100 | 约50 | 约70 | — | 99 | [ |
表1 Anammox-BES的研究与应用
污水类型 | 反应器构型 | 阳/阴(参比) 电极材料 | 体积(阳-阴极室)/L | 运行 模式 | 水力停留时间/h | 进水基质浓度/mg·L-1 | COD 去除率 /% | 总氮 去除率 /% | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
COD | NH | NO | |||||||||
短程硝化出水 | UASB | 碳刷/碳刷(甘汞) | 1.2 | 序批 | 48 | 180~1180 | 90~520 | 110~680 | 24.4 | 71.9 | [ |
焚烧渗滤液 | SBR | 碳刷/碳刷(甘汞) | 4 | 序批 | — | 50~250 | 50~250 | — | 20~40 | 70±15 | [ |
垃圾渗滤液 | 双室MFC | 碳毡/碳毡 | 0.15~0.18 | 序批 | 144 | — | 约320 | 约420 | — | 约25 | [ |
垃圾渗滤液 | 双室MFC | 石墨棒/碳布 | — | 序批 | 24 | 约266 | 约120 | — | — | 94 | [ |
合成废水 | UASB | 石墨棒/碳毡 | 0.5 | 连续 | 6 | — | 140 | 210 | — | 99.1 | [ |
合成废水 | 双室管状MEC | 碳刷/碳布 | 0.37~1.12 | 连续 | 20~90 | 2000 | 500 | — | 98.2±3.3 | 94.8±7.7 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.08~0.08 | 序批 | 24 | 3000 | 50 | 50 | 80±2 | 73±2 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.14~0.14 | 序批 | 120 | — | 50 | 40 | — | 85 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.17~0.4 | 序批 | 11.5, 23 | 约750 | 约56 | — | 100 | 82.6±0.9 | [ |
合成废水 | 双室MFC | 石墨片/石墨片 | 0.03~0.03 | 序批 | — | 1200 | 500~1000 | — | 93 | 84 | [ |
合成废水 | 双室MFC | 碳纸/碳布 | 0.028~0.028 | 序批 | 48 | — | 400 | 528 | — | 84.4 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.4~0.4 | 序批 | 24 | 100 | 约50 | 约70 | — | 99 | [ |
工程 | 工艺 | 污水类型 | 规模 /m3 | 脱氮速率 /kgN·m-3·d-1 | 脱氮效率 /% | 参考 文献 |
---|---|---|---|---|---|---|
传统Anammox工艺 | ||||||
荷兰鹿特丹Sluisjesdijk污水处理厂 | SHARON-Anammox | 污泥消化液 | 70 | 10 | 93 | [ |
荷兰Dokhaven污水厂 | PN/Anammox | 市政污水 | 4 | 0.097~0.223 | — | [ |
荷兰Apeldoorn污水处理厂 | DEMON | 污泥脱水液 | 2900 | 0.41 | 85 | [ |
中国梅花工业园污水处理厂Ⅰ期 | CANON | 味精废水 | 6750 | 1.63 | 90 | [ |
中试 | PN/A | 污泥消化液 | 7.2 | 0.6 | 72 | [ |
实验室 | PN/A | 养猪场废水 | 0.0045 | 3.9 | 73 | [ |
实验室 | DAMO/A | 合成废水 | 0.002356 | 1 | 99.9 | [ |
实验室 | PN-DAMO/A | 合成废水 | 0.0006 | 1.5 | 98 | [ |
Anammox-BES | ||||||
实验室 | 单室Anammox-MEC | 合成废水 | 0.0005 | 0.911 | 76 | [ |
实验室 | 单室Anammox-MEC | 固体焚烧渗滤液 | 0.004 | 0.45 | 71.9 | [ |
实验室 | 单室Anammox-MEC | 合成废水 | 0.00045 | 0.70 | 99.4 | [ |
实验室 | 单室MEC | 合成废水 | 0.0005 | 1.38 | 99.1 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.0004 | 0.1 | 99 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.000028 | 0.258 | 84.4 | [ |
表2 部分传统Anammox工艺与Anammox-BES的脱氮速率
工程 | 工艺 | 污水类型 | 规模 /m3 | 脱氮速率 /kgN·m-3·d-1 | 脱氮效率 /% | 参考 文献 |
---|---|---|---|---|---|---|
传统Anammox工艺 | ||||||
荷兰鹿特丹Sluisjesdijk污水处理厂 | SHARON-Anammox | 污泥消化液 | 70 | 10 | 93 | [ |
荷兰Dokhaven污水厂 | PN/Anammox | 市政污水 | 4 | 0.097~0.223 | — | [ |
荷兰Apeldoorn污水处理厂 | DEMON | 污泥脱水液 | 2900 | 0.41 | 85 | [ |
中国梅花工业园污水处理厂Ⅰ期 | CANON | 味精废水 | 6750 | 1.63 | 90 | [ |
中试 | PN/A | 污泥消化液 | 7.2 | 0.6 | 72 | [ |
实验室 | PN/A | 养猪场废水 | 0.0045 | 3.9 | 73 | [ |
实验室 | DAMO/A | 合成废水 | 0.002356 | 1 | 99.9 | [ |
实验室 | PN-DAMO/A | 合成废水 | 0.0006 | 1.5 | 98 | [ |
Anammox-BES | ||||||
实验室 | 单室Anammox-MEC | 合成废水 | 0.0005 | 0.911 | 76 | [ |
实验室 | 单室Anammox-MEC | 固体焚烧渗滤液 | 0.004 | 0.45 | 71.9 | [ |
实验室 | 单室Anammox-MEC | 合成废水 | 0.00045 | 0.70 | 99.4 | [ |
实验室 | 单室MEC | 合成废水 | 0.0005 | 1.38 | 99.1 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.0004 | 0.1 | 99 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.000028 | 0.258 | 84.4 | [ |
1 | XU Dong, LI Yang, YIN Lifeng, et al. Electrochemical removal of nitrate in industrial wastewater[J]. Frontiers of Environmental Science & Engineering, 2018, 12(1): 9. |
2 | PROSNANSKY M, SAKAKIBARA Y, KURODA M. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration[J]. Water Research, 2002, 36(19): 4801-4810. |
3 | MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. |
4 | 李旖瑜. 厌氧氨氧化深度脱氮工艺及其微生物学机理[D]. 杭州: 浙江大学, 2021. |
LI Yiyu. ANAMMOX-based nitrogen polishing process and its microbiological mechanism[D]. Hangzhou: Zhejiang University, 2021. | |
5 | LE Tri, PENG Bo, SU Chunyang, et al. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox[J]. Water Environment Research: A Research Publication of the Water Environment Federation, 2019, 91(11): 1455-1465. |
6 | STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. |
7 | LI Yingyu, HUANG Xiaowu, LI Xiaoyan. Using anammox biofilms for rapid start-up of partial nitritation-anammox in integrated fixed-film activated sludge for autotrophic nitrogen removal[J]. Science of the Total Environment, 2021, 791: 148314. |
8 | ISAKA Kazuichi, DATE Yasuhiro, SUMINO Tatsuo, et al. Ammonium removal performance of anaerobic ammonium-oxidizing bacteria immobilized in polyethylene glycol gel carrier[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1457-1465. |
9 | AHMAD Hafiz Adeel, GUO Beibei, ZHUANG Xuming, et al. A twilight for the complete nitrogen removal via synergistic partial-denitrification, anammox, and DNRA process[J]. Npj Clean Water, 2021, 4: 31. |
10 | KUMAR Mathava, LIN Jih-Gaw. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 1-9. |
11 | CHEN Huihui, LIU Sitong, YANG Fenglin, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009, 100(4): 1548-1554. |
12 | CHEN Hui, MA Chun, JI Yuxin, et al. Evaluation of the efficacy and regulation measures of the anammox process under salty conditions[J]. Separation and Purification Technology, 2014, 132: 584-592. |
13 | SHAW Dario R, Muhammad ALI, KATURI Krishna P, et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria[J]. Nature Communications, 2020, 11(1): 2058. |
14 | COONEY M J, SVOBODA V, LAU C, et al. Enzyme catalysed biofuel cells[J]. Energy & Environmental Science, 2008, 1(3): 320-337. |
15 | ARECHEDERRA Robert, MINTEER Shelley D. Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes[J]. Electrochimica Acta, 2008, 53(23): 6698-6703. |
16 | RABAEY Korneel, Jorge RODRÍGUEZ, BLACKALL Linda L, et al. Microbial ecology meets electrochemistry: Electricity-driven and driving communities[J]. The ISME Journal, 2007, 1(1): 9-18. |
17 | LU Na, ZHOU Shungui, ZHUANG Li, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology[J]. Biochemical Engineering Journal, 2009, 43(3): 246-251. |
18 | PANT Deepak, VAN BOGAERT Gilbert, DIELS Ludo, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource Technology, 2010, 101(6): 1533-1543. |
19 | RABAEY Korneel, VERSTRAETE Willy. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298. |
20 | HOANG Anh Tuan, Sandro NIŽETIĆ, Kim Hoong NG, et al. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector[J]. Chemosphere, 2022, 287: 132285. |
21 | KONG Zhiyuan, ZHOU Yongheng, FU Zhimin, et al. Mechanism of stable power generation and nitrogen removal in the ANAMMOX-MFC treating low C/N wastewater[J]. Chemosphere, 2022, 296: 133937. |
22 | HASSAN Muhammad, WEI Huawei, QIU Huijing, et al. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes[J]. Bioresource Technology, 2018, 247: 434-442. |
23 | LI Chao, REN Hongqiang, XU Ming, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J]. Bioresource Technology, 2015, 175: 545-552. |
24 | KOKABIAN Bahareh, GUDE Veera Gnaneswar, SMITH Renotta, et al. Evaluation of anammox biocathode in microbial desalination and wastewater treatment[J]. Chemical Engineering Journal, 2018, 342: 410-419. |
25 | GHIMIRE Umesh, GUDE Veera Gnaneswar, SMITH Renotta, et al. Co-existing Anammox, ammonium-oxidizing, and nitrite-oxidizing bacteria in biocathode-biofilms enable energy-efficient nitrogen removal in a bioelectrochemical desalination process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(14): 4967-4979. |
26 | ZHANG Luan, JIANG Minghe, ZHOU Shungui. Conversion of nitrogen and carbon in enriched paddy soil by denitrification coupled with anammox in a bioelectrochemical system[J]. Journal of Environmental Sciences, 2022, 111: 197-207. |
27 | LIU Hong, GROT Stephen, LOGAN Bruce E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental Science & Technology, 2005, 39(11): 4317-4320. |
28 | CHENG Shaoan, LOGAN Bruce E. Sustainable and efficient biohydrogen production via electrohydrogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18871-18873. |
29 | CHENG Shaoan, XING Defeng, CALL Douglas F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10): 3953-3958. |
30 | YIN Xin, QIAO Sen, ZHOU Jiti, et al. Using three-bio-electrode reactor to enhance the activity of anammox biomass[J]. Bioresource Technology, 2015, 196: 376-382. |
31 | QIAO Sen, YIN Xin, ZHOU Jiti, et al. Integrating anammox with the autotrophic denitrification process via electrochemistry technology[J]. Chemosphere, 2018, 195: 817-824. |
32 | ZHU Tingting, ZHANG Yaobin, BU Guanhong, et al. Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential[J]. Chemical Engineering Journal, 2016, 291: 184-191. |
33 | HE Zhen, KAN Jinjun, WANG Yanbing, et al. Electricity production coupled to ammonium in a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(9): 3391-3397. |
34 | ZHAN Guoqiang, ZHANG Lixia, TAO Yong, et al. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems[J]. Electrochimica Acta, 2014, 135: 345-350. |
35 | QU Bo, FAN Bin, ZHU Shikun, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6(1): 100-105. |
36 | LI Yan, XU Zhiheng, CAI Dingyi, et al. Self-sustained high-rate anammox: From biological to bioelectrochemical processes[J]. Environmental Science: Water Research & Technology, 2016, 2(6): 1022-1031. |
37 | YANG Yuli, LI Xiaojin, YANG Xiaoli, et al. Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system[J]. Bioresource Technology, 2017, 238: 22-29. |
38 | QIAO Liang, YUAN Ye, MEI Chang, et al. Reinforced nitrite supplement by cathode nitrate reduction with a bio-electrochemical system coupled anammox reactor[J]. Environmental Research, 2022, 204: 112051. |
39 | LIU Zhao, SUN Dezhi, TIAN Haozhong, et al. Enhancing biotreatment of incineration leachate by applying an electric potential in a partial nitritation-Anammox system[J]. Bioresource Technology, 2019, 285: 121311. |
40 | 许明熠. 耦合厌氧氨氧化技术的生物电化学系统同步脱氮产电机理研究及功能菌群落分析[D]. 广州: 华南理工大学, 2017. |
XU Mingyi. Study on reactor’s performance and bacterial colony analysis of integrated bioelectrochemical-anammox system for simultaneous nitrogen treatment and bioenergy production[D]. Guangzhou: South China University of Technology, 2017. | |
41 | RINALDI Antonio, MECHERI Barbara, GARAVAGLIA Virgilio, et al. Engineering materials and biology to boost performance of microbial fuel cells: A critical review[J]. Energy & Environmental Science, 2008, 1(4): 417-429. |
42 | GUO Kun, Antonin PRÉVOTEAU, PATIL Sunil A, et al. Engineering electrodes for microbial electrocatalysis[J]. Current Opinion in Biotechnology, 2015, 33: 149-156. |
43 | SANTORO Carlo, ARBIZZANI Catia, ERABLE Benjamin, et al. Microbial fuel cells: From fundamentals to applications. A review[J]. Journal of Power Sources, 2017, 356: 225-244. |
44 | GUO Kun, SOERIYADI Alexander H, FENG Huajun, et al. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems[J]. Bioresource Technology, 2015, 195: 46-50. |
45 | HEIJNE Annemiek TER, HAMELERS Hubertus V M, SAAKES Michel, et al. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells[J]. Electrochimica Acta, 2008, 53(18): 5697-5703. |
46 | YOU Jiseon, SANTORO Carlo, GREENMAN John, et al. Micro-porous layer (MPL)-based anode for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21811-21818. |
47 | ZHANG Changyong, LIANG Peng, JIANG Yong, et al. Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode[J]. Journal of Power Sources, 2015, 273: 580-583. |
48 | WANG Xin, CHENG Shaoan, FENG Yujie, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6870-6874. |
49 | WEI Jincheng, LIANG Peng, HUANG Xia. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology, 2011, 102(20): 9335-9344. |
50 | ZHOU Minghua, CHI Meiling, WANG Hongyu, et al. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells[J]. Biochemical Engineering Journal, 2012, 60: 151-155. |
51 | KOFFI N’Dah Joel, OKABE Satoshi. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell[J]. Chemosphere, 2021, 274: 129715. |
52 | 张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州: 浙江大学, 2014. |
ZHANG Jiqiang. Simultaneous nitrogen removal and electricity generation in microbial fuel cell and its mechanism[D]. Hangzhou: Zhejiang University, 2014. | |
53 | JETTEN Mike S M, STROUS Marc, VAN DE PAS-SCHOONEN Katinka T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. |
54 | 林朱凡, 成少安, 毛政中, 等. 生物电化学脱氮系统构建和影响因素的最新研究进展[J]. 化工进展, 2020, 39(9): 3766-3776. |
LIN Zhufan, CHENG Shaoan, MAO Zhengzhong, et al. Recent advances in the construction and influencing factors of bio-electrochemical nitrogen removal systems[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3766-3776. | |
55 | 刘松山. 生物阴极双室微生物燃料电池同步除碳脱氮与产电特性研究[D]. 上海: 东华大学, 2014. |
LIU Songshan. Characteristics of simultaneous carbon and nitrogen removal and electricity generation in a two-chamber biocathode microbial fuel cell[D]. Shanghai: Donghua University, 2014. | |
56 | 谢作甫, 郑平, 张吉强, 等. 产电微生物及其生理生化特性[J]. 科技通报, 2013, 29(7): 56-63. |
XIE Zuofu, ZHENG Ping, ZHANG Jiqiang, et al. The electricigens and their physiological and biochemical characteristics[J]. Bulletin of Science and Technology, 2013, 29(7): 56-63. | |
57 | EGLI Konrad, FANGER Urs, ALVAREZ Pedro J J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J]. Archives of Microbiology, 2001, 175(3): 198-207. |
58 | CHIU Ying Chih, LEE Liling, CHANG Chengnan, et al. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 1-7. |
59 | VIRDIS Bernardino, RABAEY Korneel, ROZENDAL René A, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J]. Water Research, 2010, 44(9): 2970-2980. |
60 | PAINTER H A. Microbial transformations of inorganic nitrogen[J]. Progress Water Technology, 1977, 8(4/5): 3-29. |
61 | GUO Yanli, WEI Xia, ZHANG Shaohui. Simultaneous removal of organics, sulfide and ammonium coupled with electricity generation in a loop microbial fuel cell system[J]. Bioresource Technology, 2020, 305: 123082. |
62 | 闫荣, 雷欣, 慕玉洁, 等. 后续碳源强化ANAMMOX-MFC系统脱氮产电调控策略[J]. 环境工程, 2021, 39(9): 76-83. |
YAN Rong, LEI Xin, MU Yujie, et al. Control strategy of subsequent carbon source in ANAMMOX-MFC system for enhancement nitrogen removal and power generation[J]. Environmental Engineering, 2021, 39(9): 76-83. | |
63 | 祖波, 马兰, 刘波, 等. 有机物对厌氧氨氧化微生物燃料电池脱氮产电性能的影响[J]. 环境科学, 2018, 39(8): 3937-3945. |
ZU Bo, MA Lan, LIU Bo, et al. Effects of organic substrates on ANAMMOX-MFC denitrification electrogenesis performance[J]. Environmental Science, 2018, 39(8): 3937-3945. | |
64 | DING Aqiang, ZHAO Dan, DING Feng, et al. Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism[J]. Chemical Engineering Journal, 2018, 343: 399-407. |
65 | WANG Han, FAN Yufei, ZHOU Mingda, et al. Function of Fe(Ⅲ)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses[J]. Water Research, 2022, 210: 117998. |
66 | ZHANG Qian, CHENG Yafei, HUANG Baocheng, et al. A review of heavy metals inhibitory effects in the process of anaerobic ammonium oxidation[J]. Journal of Hazardous Materials, 2022, 429: 128362. |
67 | DAPENA-MORA A, FERNÁNDEZ I, CAMPOS J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007, 40(4): 859-865. |
68 | SU Yang, YANG Hong, WANG Xiaotong, et al. Response of microbial succession of Anammox granular sludge (AnGS) and essential abundance under salty stress and temperature reduction[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106834. |
69 | ZHANG Zhengzhe, XU Jiajia, HU Haiyan, et al. Insight into the short- and long-term effects of inorganic phosphate on anammox granule property[J]. Bioresource Technology, 2016, 208: 161-169. |
70 | Filip GAMOŃ, Anna BANACH-WIŚNIEWSKA, KAUR Jaspreet Jandoo, et al. Microbial response of the anammox process to trace antibiotic concentration[J]. Journal of Water Process Engineering, 2022, 46: 102607. |
71 | ZHANG Qianqian, JI Xiaoming, TIAN Guangming, et al. Evolution of microbial community and antibiotic resistance genes in anammox process stressed by oxytetracycline and copper[J]. Bioresource Technology, 2021, 319: 124106. |
72 | LU Xinxin, WANG Yi, WANG Wenhuai, et al. Characteristics of rapid-biofiltering anammox reactor (RBAR) for low nitrogen wastewater treatment[J]. Bioresource Technology, 2020, 318: 124066. |
73 | XU Suyun, ZHANG Yuqing, DUAN Yuting, et al. Simultaneous removal of nitrate/nitrite and ammonia in a circular microbial electrolysis cell at low C/N ratios[J]. Journal of Water Process Engineering, 2021, 40: 101938. |
74 | WU Yun, YANG Qing, ZENG Qingnan, et al. Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chemical Engineering Journal, 2017, 316: 315-322. |
75 | 刘钊, 党岩, 田皓中, 等. 外加电势强化厌氧氨氧化工艺处理垃圾焚烧渗沥液短程硝化出水[J]. 环境工程学报, 2019, 13(7): 1670-1677. |
LIU Zhao, DANG Yan, TIAN Haozhong, et al. Enhanced biotreatment of partial nitrified incineration leachate by applying electric potential in anammox system[J]. Chinese Journal of Environmental Engineering, 2019, 13(7): 1670-1677. | |
76 | LEE Yongwoo, MARTIN Lee, GRASEL Peter, et al. Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology[J]. Environmental Technology, 2013, 34(17/18/19/20): 2727-2736. |
77 | ZEKKER Ivar, BHOWMICK Gourav Dhar, PRIKS Hans, et al. Anammox-denitrification biomass in microbial fuel cell to enhance the electricity generation and nitrogen removal efficiency[J]. Biodegradation, 2020, 31(4): 249-264. |
78 | 许明熠, 周少奇, 刘泽珺, 等. 耦合厌氧氨氧化反应的高氮负荷型双室MFC性能研究[J]. 环境科学学报, 2017, 37(1): 154-161. |
XU Mingyi, ZHOU Shaoqi, LIU Zejun, et al. Study on performance of dual-chamber MFC coupled with Anammox process in a high nitrogen load circumstance[J]. Acta Scientiae Circumstantiae, 2017, 37(1): 154-161. | |
79 | CHEN Rong, JI Jiayuan, CHEN Yujie, et al. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater[J]. Water Research, 2019, 155: 288-299. |
80 | ZHOU Xin, SONG Jingjing, WANG Gonglei, et al. Unravelling nitrogen removal and nitrous oxide emission from mainstream integrated nitrification-partial denitrification-anammox for low carbon/nitrogen domestic wastewater[J]. Journal of Environmental Management, 2020, 270: 110872. |
81 | LIU Tao, Zhuan Khai LIM, CHEN Hui, et al. Temperature-tolerated mainstream nitrogen removal by anammox and nitrite/nitrate-dependent anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2020, 54(5): 3012-3021. |
82 | WANG Shuang, WANG Lan, DENG Liangwei, et al. Performance of autotrophic nitrogen removal from digested piggery wastewater[J]. Bioresource Technology, 2017, 241: 465-472. |
83 | 王胤, 吴嘉利, 陈一, 等. 主流厌氧氨氧化工艺的研究与应用进展[J]. 净水技术, 2021, 40(11): 16-27. |
WANG Yin, WU Jiali, CHEN Yi, et al. Research and application progress of mainstream anammox process[J]. Water Purification Technology, 2021, 40(11): 16-27. | |
84 | VAN DER STAR Wouter R L, ABMA Wiebe R, BLOMMERS Dennis, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163. |
85 | HOEKSTRA Maaike, GEILVOET Stefan P, HENDRICKX Tim L G, et al. Towards mainstream anammox: Lessons learned from pilot-scale research at WWTP Dokhaven[J]. Environmental Technology, 2019, 40(13): 1721-1733. |
86 | Alejandro GONZALEZ-MARTINEZ, OSORIO Francisco, MORILLO Jose A, et al. Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions[J]. Biotechnology Progress, 2015, 31(6): 1464-1472. |
87 | WANG Gang, XU Xiaochen, ZHOU Liang, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment[J]. Bioresource Technology, 2017, 241: 181-189. |
88 | XIE Guojun, CAI Chen, HU Shihu, et al. Complete nitrogen removal from synthetic anaerobic sludge digestion liquor through integrating anammox and denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 51(2): 819-827. |
89 | LIU Tao, HU Shihu, YUAN Zhiguo, et al. High-level nitrogen removal by simultaneous partial nitritation, anammox and nitrite/nitrate-dependent anaerobic methane oxidation[J]. Water Research, 2019, 166: 115057. |
90 | XIE Fei, ZHAO Bowei, CUI Ying, et al. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis[J]. Frontiers of Environmental Science & Engineering, 2021, 15(6): 121. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[6] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[7] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[8] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[9] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[10] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[11] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[12] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[13] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
[14] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[15] | 郭朋举, 何小波, 银凤翔. 电催化氮还原合成氨MOF基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1797-1810. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |