化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2691-2701.DOI: 10.16085/j.issn.1000-6613.2023-0055
黄越1,2(), 赵立欣2, 姚宗路2, 于佳动2(), 李再兴3, 申瑞霞2, 安柯萌1,2, 黄亚丽1
收稿日期:
2023-01-12
修回日期:
2023-02-07
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
于佳动
作者简介:
黄越(2000—),女,硕士研究生,研究方向为农业废弃物厌氧发酵工艺。E-mail:haungyue20000504@163.com。
基金资助:
HUANG Yue1,2(), ZHAO Lixin2, YAO Zonglu2, YU Jiadong2(), LI Zaixing3, SHEN Ruixia2, AN Kemeng1,2, HUANG Yali1
Received:
2023-01-12
Revised:
2023-02-07
Online:
2023-05-10
Published:
2023-06-02
Contact:
YU Jiadong
摘要:
依托厌氧发酵技术处理秸秆和牛粪等木质纤维类废弃物,是资源循环利用的重要方式之一。乳酸和乙酸是厌氧发酵的重要中间产物,是生产沼气、中链脂肪酸等能源化工产品的重要前体物质,但定向生物转化协同生产效率不高、对木质纤维类废弃物协同产乳酸、乙酸机制等问题有待深入探索。本文基于对产酸代谢途径机理的分析,梳理了同步发酵和分步发酵协同产乳酸、乙酸特性,归纳了影响生物转化产酸效率的关键因素,发现在较高含固率15%~20%、接种20%~40%的活性物质和适宜的过程参数[pH为5.0左右、中温和有机负荷5~10kgVS/(m3·d)]下,木质纤维类废弃物具有良好的协同产酸效果。进一步探明物化和生物强化耦合手段对木质纤维素降解和目标产物的促进效应,为开发生物转化乳酸、乙酸协同生产关键技术以及促进秸秆等木质纤维类废弃物高值转化利用提供理论依据。
中图分类号:
黄越, 赵立欣, 姚宗路, 于佳动, 李再兴, 申瑞霞, 安柯萌, 黄亚丽. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701.
HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701.
产酸阶段 | 反应方程 | 反应条件 | 目标酸产量 | 关键菌 | 参考文献 |
---|---|---|---|---|---|
乙酸/乙醇型 代谢途径 | 1. C6H12O6 + 2H2O 2. CH3CH2COOH + 2H2O 3. CH3CH2CH2COOH + 2H2O 4. CH3CH2OH + 2H2O 5. C6H12O6 + H2O | HRT 5h、pH=4.3~4.4 | 乙醇3.82gCOD/L 乙酸0.66gCOD/L | [ | |
丙酮-丁醇-乙醇 发酵 | 1. C6H12O6 + H2O 2. C6H12O6 3.C6H12O6 | 326h饲喂、葡萄糖474.9g/L、间歇性气体汽提、补料分批发酵 | 丙酮-丁醇-乙醇172g/L | hyper-butanol producing Clostridium acetobutylicum JB200 | [ |
丙酸型代谢 途径 | 1. C6H12O6 + 2H2 2. 3C6H12O6 | 两相发酵 | 丙酸7.13gCOD/L | Propionibacteriumacidipropionici | [ |
丁酸型代谢 途径 | 1. C6H12O6 2. 4C6H12O6 | 50%含菌培养基 | 丁酸8.06g/L | Clostridium tyrobutyricum strain RPT-4213 | [ |
混合酸代谢 途径 | 1. 3C6H12O6 2. C6H12O6 + H2O 3. 4C6H12O6 | pH=6.5、缓冲液15~20mmol/gVS | 挥发酸及乙醇70mol/L | [ | |
乳酸型代谢 途径 | 1. C6H12O6 2. C6H12O6 3. C6H12O6 | 固体负荷为60g/L、35℃ | 乳酸14.7g/L、乙酸4.0g/L、乙醇3.2g/L | Lactobacillus brevis、Lactobacillus fermentum | [ |
同型产乙酸发酵 | 1. 4H2 + 2CO2 2. C6H12O6 | 氢分压1700mbar、pH=7.0 | 乙酸44g/L | Acetobacterium woodii | [ |
表1 7种产酸途径
产酸阶段 | 反应方程 | 反应条件 | 目标酸产量 | 关键菌 | 参考文献 |
---|---|---|---|---|---|
乙酸/乙醇型 代谢途径 | 1. C6H12O6 + 2H2O 2. CH3CH2COOH + 2H2O 3. CH3CH2CH2COOH + 2H2O 4. CH3CH2OH + 2H2O 5. C6H12O6 + H2O | HRT 5h、pH=4.3~4.4 | 乙醇3.82gCOD/L 乙酸0.66gCOD/L | [ | |
丙酮-丁醇-乙醇 发酵 | 1. C6H12O6 + H2O 2. C6H12O6 3.C6H12O6 | 326h饲喂、葡萄糖474.9g/L、间歇性气体汽提、补料分批发酵 | 丙酮-丁醇-乙醇172g/L | hyper-butanol producing Clostridium acetobutylicum JB200 | [ |
丙酸型代谢 途径 | 1. C6H12O6 + 2H2 2. 3C6H12O6 | 两相发酵 | 丙酸7.13gCOD/L | Propionibacteriumacidipropionici | [ |
丁酸型代谢 途径 | 1. C6H12O6 2. 4C6H12O6 | 50%含菌培养基 | 丁酸8.06g/L | Clostridium tyrobutyricum strain RPT-4213 | [ |
混合酸代谢 途径 | 1. 3C6H12O6 2. C6H12O6 + H2O 3. 4C6H12O6 | pH=6.5、缓冲液15~20mmol/gVS | 挥发酸及乙醇70mol/L | [ | |
乳酸型代谢 途径 | 1. C6H12O6 2. C6H12O6 3. C6H12O6 | 固体负荷为60g/L、35℃ | 乳酸14.7g/L、乙酸4.0g/L、乙醇3.2g/L | Lactobacillus brevis、Lactobacillus fermentum | [ |
同型产乙酸发酵 | 1. 4H2 + 2CO2 2. C6H12O6 | 氢分压1700mbar、pH=7.0 | 乙酸44g/L | Acetobacterium woodii | [ |
影响因素 | 底物 | 接种物 | 调控因素 | 主要微生物 | 目标产物 | 参考 文献 |
---|---|---|---|---|---|---|
底物含固率 | 帝王草 | 萎蔫处理、30℃枯萎12h至帝王草含水量63% | Lactococcus、Enterococcus | 乳酸4.07g/kgDM 乙酸16.73g/kgDM | [ | |
接种物 | 稻草 | 青贮废水 | 黑麦草青贮出水180mL,加入100g稻草鲜料(FM)中,液固比9∶5 | Lactobacillus、Weissella、Enterococcus | 乳酸4.6%DM 乙酸2.1%DM | [ |
玉米秸秆 | 黑麦草、Lactobacillus plantarum (L694) | 黑麦草70%、玉米秸秆30% | Lactobacillus plantarum、 Lactobacillus hammesii、 Lactobacillus brevis、 Lactobacillus coryniformi | 乳酸14.98%DM 乙酸2.30%DM | [ | |
燕麦秸秆 | Pediococcus acidilactici DSM 20284 | pH=3.7 发酵35天 | 乳酸94.19g/kgDM 乙酸5.18g/kgDM | [ | ||
过程参数 | 纤维素生物污泥 | Lactobacillus rhamnosus CECT-288 | 初始液固比12g/g、同步糖化产酸工艺、pH=4.85、分批补料 | 乳酸42g/L 乙酸4.3g/L | [ | |
玉米泡粉 | 30FPU(滤纸单位)/g 纤维素酶、P.acidilactici PA204 | 12% 秸秆、同步糖化产酸工艺、37℃、pH=6.0 | 乳酸0.77g/g 秸秆 乙酸0.08g/g 秸秆 | [ | ||
小麦秸秆 | Bacillus coagulans DSM 2314、酶制剂GC 220 | 20.0%(质量体积浓度)氢氧化钙悬浮液将pH控制在6.0、分批补料、同步糖化发酵 | 乳酸40.7g/L 乙酸1.5g/L | [ | ||
青贮秸秆 | Lactobacillus plantarum | pH=3.95±0.22 | Lactobacillus plantarum、 Lactobacillus brevis、 Weissella cibaria、 Pediococcus acidilactici | 乳酸5.14 % DM 乙酸1.06 % DM | [ | |
玉米秸秆 | 20FPU/g纤维素酶 | 50℃、NaOH每12h调整pH至6.0、分批补料、NHB15 预处理 | 乳酸51.4g/L 乙酸42g/L | [ |
表2 不同影响因素对木质纤维类废弃物协同产酸的影响
影响因素 | 底物 | 接种物 | 调控因素 | 主要微生物 | 目标产物 | 参考 文献 |
---|---|---|---|---|---|---|
底物含固率 | 帝王草 | 萎蔫处理、30℃枯萎12h至帝王草含水量63% | Lactococcus、Enterococcus | 乳酸4.07g/kgDM 乙酸16.73g/kgDM | [ | |
接种物 | 稻草 | 青贮废水 | 黑麦草青贮出水180mL,加入100g稻草鲜料(FM)中,液固比9∶5 | Lactobacillus、Weissella、Enterococcus | 乳酸4.6%DM 乙酸2.1%DM | [ |
玉米秸秆 | 黑麦草、Lactobacillus plantarum (L694) | 黑麦草70%、玉米秸秆30% | Lactobacillus plantarum、 Lactobacillus hammesii、 Lactobacillus brevis、 Lactobacillus coryniformi | 乳酸14.98%DM 乙酸2.30%DM | [ | |
燕麦秸秆 | Pediococcus acidilactici DSM 20284 | pH=3.7 发酵35天 | 乳酸94.19g/kgDM 乙酸5.18g/kgDM | [ | ||
过程参数 | 纤维素生物污泥 | Lactobacillus rhamnosus CECT-288 | 初始液固比12g/g、同步糖化产酸工艺、pH=4.85、分批补料 | 乳酸42g/L 乙酸4.3g/L | [ | |
玉米泡粉 | 30FPU(滤纸单位)/g 纤维素酶、P.acidilactici PA204 | 12% 秸秆、同步糖化产酸工艺、37℃、pH=6.0 | 乳酸0.77g/g 秸秆 乙酸0.08g/g 秸秆 | [ | ||
小麦秸秆 | Bacillus coagulans DSM 2314、酶制剂GC 220 | 20.0%(质量体积浓度)氢氧化钙悬浮液将pH控制在6.0、分批补料、同步糖化发酵 | 乳酸40.7g/L 乙酸1.5g/L | [ | ||
青贮秸秆 | Lactobacillus plantarum | pH=3.95±0.22 | Lactobacillus plantarum、 Lactobacillus brevis、 Weissella cibaria、 Pediococcus acidilactici | 乳酸5.14 % DM 乙酸1.06 % DM | [ | |
玉米秸秆 | 20FPU/g纤维素酶 | 50℃、NaOH每12h调整pH至6.0、分批补料、NHB15 预处理 | 乳酸51.4g/L 乙酸42g/L | [ |
强化手段 | 底物 | 强化条件 | 强化效果 | 参考文献 |
---|---|---|---|---|
物理和化学强化 | 玉米秸秆 | 蒸汽爆破-氯化胆碱、1∶2.2(质量比)、1.0MPa、184℃、15min | 有效脱除84.7%的木质素和78.9%的木聚糖 | [ |
玉米秸秆 | 碳酸铵作为氨化剂浓度20%、11d、固含量50% | 还原糖产量为312.67mg/g,比对照增加了51.80% | [ | |
芦苇秸秆 | 深共熔溶剂(氯化苄三乙胺/甲酸) | 葡萄糖得率达76.64%,比生芦苇秸秆高5.24倍左右 | [ | |
生物强化 | 青贮玉米秸秆 | 白腐菌固态发酵、15d | 纤维素、半纤维素和木质素降解率分别为9.9%、23.2%、15.2% | [ |
玉米秸秆 | 接种从青贮中分离菌株Lb. farciminis 1101、Lb. brevis 0991 | 乳酸含量分别为>150mmol/L、0.203mol/L,乙酸含量均为38mmol/L | [ | |
玉米秸秆 | 添加凝结芽孢杆菌、粪链球菌和乳酸杆菌,发酵60h | 乳酸含量6.88g/L,乙酸含量14.53g/L | [ | |
联合强化 | 玉米秸秆 | 超声波-好氧水解 | 初始还原糖含量12.62mg/mL,以乙酸为主的挥发性脂肪酸含量16.24g/L | [ |
水稻秸秆 | 细菌(Cupriavidus basilensis B-8)与稀酸预处理 | 酶消化率提高了70% | [ |
表3 不同强化手段及强化效果
强化手段 | 底物 | 强化条件 | 强化效果 | 参考文献 |
---|---|---|---|---|
物理和化学强化 | 玉米秸秆 | 蒸汽爆破-氯化胆碱、1∶2.2(质量比)、1.0MPa、184℃、15min | 有效脱除84.7%的木质素和78.9%的木聚糖 | [ |
玉米秸秆 | 碳酸铵作为氨化剂浓度20%、11d、固含量50% | 还原糖产量为312.67mg/g,比对照增加了51.80% | [ | |
芦苇秸秆 | 深共熔溶剂(氯化苄三乙胺/甲酸) | 葡萄糖得率达76.64%,比生芦苇秸秆高5.24倍左右 | [ | |
生物强化 | 青贮玉米秸秆 | 白腐菌固态发酵、15d | 纤维素、半纤维素和木质素降解率分别为9.9%、23.2%、15.2% | [ |
玉米秸秆 | 接种从青贮中分离菌株Lb. farciminis 1101、Lb. brevis 0991 | 乳酸含量分别为>150mmol/L、0.203mol/L,乙酸含量均为38mmol/L | [ | |
玉米秸秆 | 添加凝结芽孢杆菌、粪链球菌和乳酸杆菌,发酵60h | 乳酸含量6.88g/L,乙酸含量14.53g/L | [ | |
联合强化 | 玉米秸秆 | 超声波-好氧水解 | 初始还原糖含量12.62mg/mL,以乙酸为主的挥发性脂肪酸含量16.24g/L | [ |
水稻秸秆 | 细菌(Cupriavidus basilensis B-8)与稀酸预处理 | 酶消化率提高了70% | [ |
1 | 农业农村部新闻办公室. 《全国农作物秸秆综合利用情况报告》发布2021年我国农作物秸秆综合利用率达88.1%[J]. 中国农业综合开发, 2022(10): 32. |
Information Office of the Ministry of Agriculture and Rural Affairs. The National Report on Comprehensive Utilization of Crop Straw was released. In 2021, the comprehensive utilization rate of crop straw in China reached 88.1%[J]. Agricultural Comprehensive Development in China, 2022(10): 32. | |
2 | GUAN Ruolin, YUAN Hairong, YUAN Shuai, et al. Current development and perspectives of anaerobic bioconversion of crop stalks to Biogas: A review[J]. Bioresource Technology, 2022, 349: 126615. |
3 | LI Hongli, CAO Feifei, WANG Yan, et al. The effect of different acetic acid accumulation on the methanogenic population and methane production in dry mesophilic anaerobic digestion[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(12): 1678-1684. |
4 | VEZA Ibham, MUHAMAD SAID Mohd Farid, LATIFF Zulkarnain Abdul, et al. Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation[J]. Biomass and Bioenergy, 2021, 144: 105919. |
5 | CHEN Yang, YIN Yanan, WANG Jianlong. Influence of butyrate on fermentative hydrogen production and microbial community analysis[J]. International Journal of Hydrogen Energy, 2021, 46(53): 26825-26833. |
6 | JIANG Dan, FANG Zhen, CHIN Siew-xian, et al. Biohydrogen production from hydrolysates of selected tropical biomass wastes with clostridium butyricum[J]. Scientific Reports, 2016, 6: 27205. |
7 | 张盼月, 王清谚, 梁劲松, 等. 有机废物厌氧发酵液链延长合成中链脂肪酸研究进展[J]. 环境工程学报, 2022, 16(2): 363-374. |
ZHANG Panyue, WANG Qingyan, LIANG Jinsong, et al. Study progress on chain elongation of anaerobic fermentation liquid from organic wastes for medium-chain fatty acid synthesis[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 363-374. | |
8 | KHOR Way Cern, ANDERSEN Stephen, VERVAEREN Han, et al. Electricity-assisted production of caproic acid from grass[J]. Biotechnology for Biofuels, 2017, 10: 180. |
9 | YAN Jing, SUN Yibo, KANG Yuehua, et al. An innovative strategy to enhance the ensiling quality and methane production of excessively wilted wheat straw: Using acetic acid or hetero-fermentative lactic acid bacterial community as additives[J]. Waste Management, 2022, 149: 11-20. |
10 | KHOR Way Cern, ROUME Hugo, COMA Marta, et al. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid[J]. Applied Microbiology and Biotechnology, 2016, 100(19): 8337-8348. |
11 | LIN Lin, WAN Chunli, LIU Xiang, et al. Effect of initial pH on mesophilic hydrolysis and acidification of swine manure[J]. Bioresource Technology, 2013, 136: 302-308. |
12 | AHMAD Fiaz, SILVA Edson Luiz, AMÂNCIO VARESCHE Maria Bernadete. Hydrothermal processing of biomass for anaerobic digestion—A review[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 108-124. |
13 | ZHOU Miaomiao, YAN Binghua, WONG Jonathan, et al. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways[J]. Bioresource Technology, 2018, 248: 68-78. |
14 | CASTILLO MARTINEZ Fabio Andres, BALCIUNAS Eduardo Marcos, SALGADO José Manuel, et al. Lactic acid properties, applications and production: A review[J]. Trends in Food Science & Technology, 2013, 30(1): 70-83. |
15 | DEMLER Martin, Dirk WEUSTER-BOTZ. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii [J]. Biotechnology and Bioengineering, 2011, 108(2): 470-474. |
16 | ABDEL-RAHMAN Mohamed Ali, TASHIRO Yukihiro, SONOMOTO Kenji. Recent advances in lactic acid production by microbial fermentation processes[J]. Biotechnology Advances, 2013, 31(6): 877-902. |
17 | WANG Bing, LI Yongfeng, REN Nanqi. Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4361-4367. |
18 | XUE Chuang, ZHAO Jingbo, LU Congcong, et al. High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping[J]. Biotechnology and Bioengineering, 2012, 109(11): 2746-2756. |
19 | CHEN Yinguang, LI Xiang, ZHENG Xiong, et al. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici [J]. Water Research, 2013, 47(2): 615-622. |
20 | LIU Siqing, BISCHOFF Kenneth M, LEATHERS Timothy D, et al. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213[J]. Bioresource Technology, 2013, 143: 322-329. |
21 | ZHU Heguang, PARKER Wayne, BASNAR Robert, et al. Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes[J]. Bioresource Technology, 2009, 100(21): 5097-5102. |
22 | BINTSIS Thomas. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics[J]. AIMS Microbiology, 2018, 4(4): 665-684. |
23 | WANG Zhimin, ZHANG Fengjiao, Dongcan LYU, et al. Iron oxychloride-based heterogeneous Fenton pretreatment of corn stover for enhanced sugars production[J]. Chemical Engineering Journal, 2021, 416: 127703. |
24 | 赵晶, 陈明, 张靖方, 等. 酶法糖化玉米芯发酵生产乙醇的研究[J]. 林产化学与工业, 2007, 27(4): 7-10. |
ZHAO Jing, CHEN Ming, ZHANG Jingfang, et al. Study on enzymatic hydrolysis of corncob for ethanol production[J]. Chemistry and Industry of Forest Products, 2007, 27(4): 7-10. | |
25 | 姚日生, 邓胜松, 齐本坤, 等. Tween80对稻草水解及同步糖化与发酵产乳酸的影响[J]. 精细化工, 2008, 25(2): 155-158. |
YAO Risheng, DENG Shengsong, QI Benkun, et al. The effect of surfactants on the enzymatic hydrolysis of rice straw and lactic acid production from rice straw by simultaneous saccharification and fermentation[J]. Fine Chemicals, 2008, 25(2): 155-158. | |
26 | AGUILAR R, RAMÍREZ J A, GARROTE G, et al. Kinetic study of the acid hydrolysis of sugar cane bagasse[J]. Journal of Food Engineering, 2002, 55(4): 309-318. |
27 | 甄月月, 葛一洪, 施国中, 等. 不同含固率和接种比对尾菜厌氧消化的影响[J]. 中国沼气, 2020, 38(2): 45-51. |
ZHEN Yueyue, GE Yihong, SHI Guozhong, et al. Effects of total solids content and inoculation ratio on anaerobic digestion of vegetable waste[J]. China Biogas, 2020, 38(2): 45-51. | |
28 | 马旭光, 江滔, 唐琼, 等. 油菜秸秆和鸡粪比例及含固率对其发酵产甲烷特性的影响[J]. 农业工程学报, 2018, 34(12): 236-244. |
MA Xuguang, JIANG Tao, TANG Qiong, et al. Effect of total solid content on biogas production from rape stalk and chicken manure with different mixing ratios[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 236-244. | |
29 | GUO Zechong, ZHOU Aijuan, YANG Chunxue, et al. Enhanced short chain fatty acids production from waste activated sludge conditioning with typical agricultural residues: Carbon source composition regulates community functions[J]. Biotechnology for Biofuels, 2015, 8(1): 192. |
30 | LI Yan, XU Haipeng, HUA Dongliang, et al. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources[J]. Science of the Total Environment, 2020, 699: 134226. |
31 | 郭志超, 徐先宝, 徐婷婷, 等. 接种不同菌源的餐厨垃圾发酵代谢途径及产己酸效能分析[J]. 环境工程, 2021, 39(9): 160-168. |
GUO Zhichao, XU Xianbao, XU Tingting, et al. Analysis on fermentation pathway and caproate production from food waste by different inoculum[J]. Environmental Engineering, 2021, 39(9): 160-168. | |
32 | 潘怡博. 秸秆与畜禽粪便混合发酵产气特性研究[D]. 郑州: 河南农业大学, 2021. |
PAN Yibo. Characteristics of biogas production by mixed fermentation of straw and livestock manure[D]. Zhengzhou: Henan Agricultural University, 2021. | |
33 | LIAN Tianjing, ZHANG Wanqin, CAO Qitao, et al. Improving production of lactic acid and volatile fatty acids from dairy cattle manure and corn straw silage: Effects of mixing ratios and temperature[J]. Bioresource Technology, 2022, 359: 127449. |
34 | 李定龙, 戴肖云, 赵宋敏, 等. pH对厨余垃圾厌氧发酵产酸的影响[J]. 环境科学与技术, 2011, 34(4): 125-128. |
LI Dinglong, DAI Xiaoyun, ZHAO Songmin, et al. Influence of pH on acidity during anaerobic fermentation of kitchen waste[J]. Environmental Science & Technology, 2011, 34(4): 125-128. | |
35 | Juan CUBERO-CARDOSO, RUSSO Egidio, SERRANO Antonio, et al. Enhancing the recovery of volatile fatty acids from strawberry extrudate through anaerobic fermentation at different pH values[J]. Environmental Technology & Innovation, 2022, 28: 102587. |
36 | LIU Yue, SHI Chuan, WU Yuanyuan, et al. Effect of pH dynamic control on ethanol-lactic type fermentation (ELTF) performance of glucose[J]. Environmental Technology, 2022, 43(26): 4102-4114. |
37 | TANG Jialing, WANG Xiaochang, HU Yisong, et al. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR[J]. Waste Management, 2016, 52: 278-285. |
38 | 马海玲, 吴远远, 郑明月, 等. pH控制下果蔬垃圾酸化反应器中微生物优势菌群识别[J]. 环境工程学报, 2016, 10(12): 7349-7354. |
MA Hailing, WU Yuanyuan, ZHENG Mingyue, et al. Identification dominant bacteria in acidification bioreactor fed by fruit and vegetable waste under pH control[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7349-7354. | |
39 | SURYAWANSHI P C, CHAUDHARI A B, KOTHARI R M. Thermophilic anaerobic digestion: The best option for waste treatment[J]. Critical Reviews in Biotechnology, 2010, 30(1): 31-40. |
40 | 任海伟, 冯银萍, 刘通, 等. 温度对干玉米秸秆与废弃白菜混贮发酵品质的影响和微生物菌群解析[J]. 应用与环境生物学报, 2019, 25(3): 719-728. |
REN Haiwei, FENG Yinping, LIU Tong, et al. Effects of temperature on the mixed storage fermentation quality of dry corn stalk and cabbage wastes and their microbial communities[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(3): 719-728. | |
41 | WANG C, NISHINO N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage[J]. Journal of Applied Microbiology, 2013, 114(6): 1687-1695. |
42 | LI Dong, LIU Shengchu, MI Li, et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure[J]. Bioresource Technology, 2015, 187: 120-127. |
43 | CHEN Rong, LI Mao, YANG Jinsong, et al. Exploring the effect of wilting on fermentation profiles and microbial community structure during ensiling and air exposure of king grass silage[J]. Frontiers in Microbiology, 2022, 13: 971426. |
44 | SUN Hong, LIAO Chaosheng, CHEN Liangyin, et al. Potential for volatile fatty acid production via anaerobically-fermenting rice straw pretreated with silage effluent and phenyllactic acid[J]. Bioresource Technology, 2023, 369: 128355. |
45 | YAN Yanhong, LI Xiaomei, GUAN Hao, et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria[J]. Bioresource Technology, 2019, 279: 166-173. |
46 | WANG Siran, YUAN Xianjun, DONG Zhihao, et al. Characteristics of lactic acid bacteria isolated from different sources and their effects on the silage quality of oat (Avena sativa L.) straw on the Tibetan Plateau[J]. Grassland Science, 2018, 64(2): 128-136. |
47 | ROMANI Aloia, YANEZ Remedios, GARROTE Gil, et al. SSF production of lactic acid from cellulosic biosludges[J]. Bioresource Technology, 2008, 99(10): 4247-4254. |
48 | HU Jinlong, LIN Yanxu, ZHANG Zhenting, et al. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation[J]. Bioresource Technology, 2016, 214: 74-80. |
49 | MAAS Ronald H W, BAKKER Robert R, JANSEN Mickel L A, et al. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate[J]. Applied Microbiology and Biotechnology, 2008, 78(5): 751-758. |
50 | CAI Yimin, DU Zhumei, YAMASAKI Seishi, et al. Community of natural lactic acid bacteria and silage fermentation of corn stover and sugarcane tops in Africa[J]. Asian-Australasian Journal of Animal Sciences, 2020, 33(8): 1252-1264. |
51 | LI Hong, KE Xuejia, LI Ming, et al. Bismuth ferrite Fenton-like pretreatment improves lactic acid production from corn stover without detoxification by Bacillus coagulans [J]. Biofuels, Bioproducts and Biorefining, 2021, 15(6): 1753–1762. |
52 | OLIVA José, NEGRO María, MANZANARES Paloma, et al. A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective[J]. Fermentation, 2017, 3(2): 15. |
53 | TSEGAYE Bahiru, BALOMAJUMDER Chandrajit, ROY Partha. Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield[J]. Energy Conversion and Management, 2019, 186: 82-92. |
54 | XU Zhenshang, HE Huiying, ZHANG Susu, et al. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage[J]. Scientific Reports, 2017, 7: 13614. |
55 | 郭睿. 残次香梨与玉米秸秆混合发酵饲料的筛选及其评价[D]. 阿拉尔: 塔里木大学, 2022. |
GUO Rui. Selecting and evaluating of mixed fermentation feed of defective pear and corn stalks[D]. Alaer: Tarim University, 2022. | |
56 | LALAK Justyna, KASPRZYCKA Agnieszka, MARTYNIAK Danuta, et al. Effect of biological pretreatment of Agropyron elongatum ‘BAMAR’ on biogas production by anaerobic digestion[J]. Bioresource Technology, 2016, 200: 194-200. |
57 | LI Na, XIAO Xingxiao, LI Cheng, et al. Boosting VFAs production during the anaerobic acidification of lignocellulose waste pulp and paper mill excess sludge: Ultrasonic pretreatment and inoculating rumen microorganisms[J]. Industrial Crops and Products, 2022, 188: 115613. |
58 | SIVAGURUNATHAN Periyasamy, Tirath RAJ, CHAUHAN Prakram Singh, et al. High-titer lactic acid production from pilot-scale pretreated non-detoxified rice straw hydrolysate at high-solid loading[J]. Biochemical Engineering Journal, 2022, 187: 108668. |
59 | NASIR Arslna, CHEN Hongzhang, WANG Lan. Novel single-step pretreatment of steam explosion and choline chloride to de-lignify corn stover for enhancing enzymatic edibility[J]. Process Biochemistry, 2020, 94: 273-281. |
60 | 李建勋, 李鑫, 王雨萌, 等. 氨化预处理对玉米秸秆酶解产糖的影响[J/OL].食品工业科技, 2022. DOI: 10.13386/j.issn1002-0306. 2022090155 . |
LI Jianxun, LI Xin, WANG Yumeng, et al. Effect of ammonia pretreatment on enzymatic sugar production from corn stover [J]. Science and Technology of Food Industry, 2022. DOI: 10.13386/j.issn1002-0306. 2022090155 . | |
61 | ZHANG Zhaohui, XU Jun, XIE Junxian, et al. Physicochemical transformation and enzymatic hydrolysis promotion of reed straw after pretreatment with a new deep eutectic solvent[J]. Carbohydrate Polymers, 2022, 290: 119472. |
62 | 柳珊, 吴树彪, 张万钦, 等. 白腐真菌预处理对玉米秸秆厌氧发酵产甲烷影响实验[J]. 农业机械学报, 2013, 44(S2): 124-129, 142. |
LIU Shan, WU Shubiao, ZHANG Wanqin, et al. Effect of white-rot fungi pretreatment on methane production from anaerobic digestion of corn stover[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(S2): 124-129, 142. | |
63 | 何慧英. 乳酸菌的筛选及其对青贮饲料有氧稳定性的研究[D]. 济南: 山东大学, 2018. |
HE Huiying. Isolation of lactic acid bacteria and their effects on aerobic stability in silage[D]. Jinan: Shandong University, 2018. | |
64 | 孟祥玉. 玉米秸秆生物预处理及L-乳酸发酵工艺研究[D]. 郑州: 郑州轻工业大学, 2022. |
MENG Xiangyu. Study on biological pretreatment of corn stalks and L-lactic acid fermentation process[D]. Zhengzhou: Zhengzhou University of Light Industry, 2022. | |
65 | 程秋爽. 超声波/好氧水解对玉米秸秆厌氧消化特性的影响[D]. 哈尔滨: 东北农业大学, 2021. |
CHENG Qiushuang. Effects on anaerobic digestion characteristics of corn stalks with ultrasonic/aerobic hydrolysis[D]. Harbin: Northeast Agricultural University, 2021. | |
66 | YAN Xu, WANG Zhongren, ZHANG Kejing, et al. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2017, 245: 419-425. |
[1] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[2] | 黄格省, 师晓玉, 丁文娟, 王春娇, 慕彦君, 侯雨璇. 光伏电池封装胶膜材料发展现状与前景分析[J]. 化工进展, 2023, 42(10): 5037-5046. |
[3] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[4] | 向晟, 王超, 庄钰, 顾偲雯, 张磊, 都健. 变压精馏分离乙酸甲酯-甲醇-乙酸乙酯体系的设计与控制[J]. 化工进展, 2022, 41(8): 4065-4076. |
[5] | 赵潇, 陈中顺, 唐忠强, 石轩, 代成义, 马晓迅. EDTA辅助制备高活性费托合成催化剂[J]. 化工进展, 2022, 41(2): 759-769. |
[6] | 方聪, 刘怡雪, 黎四芳. 爱德万甜中间体3-羟基-4-甲氧基肉桂醛的合成[J]. 化工进展, 2022, 41(11): 6053-6060. |
[7] | 丁兴江, 章学来, 朱嘉豪, 毛发, 房满庭, 冯天平. 三水合乙酸钠复合相变材料过冷特性实验统计分析[J]. 化工进展, 2022, 41(11): 5946-5960. |
[8] | 靳元勋, 霍地, 孙旭东. 液相法制备棒状Al2O3及Al2O3-ZrO2陶瓷复合粉体[J]. 化工进展, 2021, 40(S2): 309-314. |
[9] | 刘荣涛, 张诗洋, 黄兴文, 朋小康, 闵永刚. 聚苯胺/聚乳酸复合纳米纤维表面形貌对生物相容性的影响[J]. 化工进展, 2021, 40(8): 4406-4412. |
[10] | 冯新振, 刘军, 季伟捷. 乙酸(酯)-甲醛缩合制丙烯酸(酯)研究进展[J]. 化工进展, 2021, 40(4): 2005-2015. |
[11] | 张存胜, 刘岩, 杨莉, 田玉菲. 工业废弃合成气厌氧发酵产己醇研究进展[J]. 化工进展, 2021, 40(3): 1604-1610. |
[12] | 焦阳, 李之行, 张瑛洁, 王凯, 程喜全. 可生物降解分离膜材料及其应用研究进展[J]. 化工进展, 2021, 40(2): 949-958. |
[13] | 饶瑞晔, 毛竹简, 林晓榆, 郭绍英, 胡家朋. 脱乙酰基改性乙酸纤维薄膜对乳化油分离及积垢机理的探究[J]. 化工进展, 2021, 40(10): 5415-5423. |
[14] | 俞森龙, 胡香凝, 唐飞宇, 祝晨杰, 相恒学, 周家良, 胡泽旭, 冯琦云, 朱美芳. 聚乳酸阻燃改性研究进展[J]. 化工进展, 2020, 39(9): 3421-3432. |
[15] | 张雨青, 宋秀兰, 毕培. pH对过硫酸氢钾复合盐强化剩余污泥产酸的影响[J]. 化工进展, 2020, 39(9): 3786-3793. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |