化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1604-1610.DOI: 10.16085/j.issn.1000-6613.2020-0761

• 生物与医药化工 • 上一篇    下一篇

工业废弃合成气厌氧发酵产己醇研究进展

张存胜1,2(), 刘岩1, 杨莉1, 田玉菲3()   

  1. 1.江苏大学食品与生物工程学院,江苏 镇江 212013
    2.江苏省生物质能源与材料重点实验室, 江苏 南京 210042
    3.南京智造力知识产权代理有限公司,江苏 南京 211100
  • 收稿日期:2020-05-07 出版日期:2021-03-05 发布日期:2021-03-17
  • 通讯作者: 田玉菲
  • 作者简介:张存胜(1983—),男,博士,副教授,研究方向为食品废弃物资源化利用。E-mail:zhangcs@mail.ujs.edu.cn
  • 基金资助:
    中国轻工业清洁生产和资源综合利用重点实验室(北京工商大学)开放课题(CP-2018-YB6);江苏省生物质能源与材料重点实验室开放基金项目(JSBEM201913);江苏高校优势学科建设工程

Research progress of hexanol production through anaerobic fermentation of wasted industrial syngas

ZHANG Cunsheng1,2(), LIU Yan1, YANG Li1, TIAN Yufei3()   

  1. 1.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    2.Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, Jiangsu, China
    3.Nanjing Zhizaoli Intellectual Property Agency Co. , Ltd. , Nanjing 211100, Jiangsu, China
  • Received:2020-05-07 Online:2021-03-05 Published:2021-03-17
  • Contact: TIAN Yufei

摘要:

己醇作为高附加值中链醇,其生物合成越来越受到研究人员的广泛关注。利用工业废弃合成气制备生物己醇能够降低原料成本,然而,生物己醇的低产率严重限制了其广泛应用。本文基于生物己醇发酵的新近报道,首次对合成气发酵制备生物己醇的研究进展进行了分析与综述。文中指出目前能够直接利用合成气合成生物己醇的菌株仅有Clostridium carboxidivorans一例,但其更倾向合成乙酸、乙醇、丁酸和丁醇等,其最高己醇产量仅为1.06g/L。己醇发酵性能受合成气组分、抑制物浓度、气液传质效率、温度和pH等影响,优化并调控关键环境因子有利于提高己醇产量。采用混菌发酵是生物己醇合成的另一种可替代途径,其关键三步反应为:①合成气向乙酸乙醇转化;②乙酸乙醇链延伸向己酸转化;③己酸还原为己醇,相关菌株包括C. ljungdahliiA. bacchiC. kluyveri等,然而混合发酵的经济性能有待进一步研究。文中指出未来生物己醇的研究将重点解决己醇产量低的“瓶颈”问题,通过合成生物学或基因工程手段改造并获得高产己醇菌未来可期。

关键词: 合成气, 厌氧发酵, Clostridium carboxidivorans, 己醇, 生物燃料

Abstract:

As a value-added bioproduct, biohexanol synthesis through biological way has attracted extensive attention. Although the cost of biohexanol can decrease using syngas as substrate, the low yield hexanol production limits its application. In this study, the advance of biohexanol production from wasted industrial syngas through biological fermentation is for the first time analyzed on the basis of recent studies. To date, only one strain is reported, which can convert syngas into biohexanol directly, being Clostridium carboxidivorans. This strain prefers to produce acetate, ethanol, butyrate and butanol rather than hexanol. The highest hexanol yield of Clostridium carboxidivorans was 1.06g/L. The performance of biohexanol fermentation can be influenced by several key environmental factors such as the composition of syngas, concentration of inhibitors, mass transfer efficiency of gas-solid, temperature and pH. Optimizing and regulating these parameters are helpful to improve the production of biohexanol. Coculture fermentation is an alternative way for biohexanol production using the bacteria such as C. ljungdahlii, A. bacchi and C. kluyveri, which can be separated into three steps: ①conversion of syngas into acetate and ethanol; ②caproate production from acetate and ethanol via chain elongation; and ③reduction of caproate into hexanol. However, the economic feasibility of coculture fermentation needs to be further proved. The future study will focuses on improving the low yield production of biohexanol which is considered as “bottleneck” issue. It is expected that the hexanol-producing bacteria with high productivity can be obtained through synthetic biology and genetic engineering.

Key words: syngas, anaerobic fermentation, Clostridium carboxidivorans, hexanol, biofuel

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn