1 |
GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
|
2 |
邵斌, 孙哲毅, 章云, 等. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151.
|
|
SHAO Bin, SUN Zheyi, ZHANG Yun, et al. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151.
|
3 |
周伟, 成康, 张庆红, 等. 合成气转化中的接力催化[J]. 科学通报, 2021, 66(10): 1157-1169.
|
|
ZHOU Wei, CHENG Kang, ZHANG Qinghong, et al. Relay catalysis in the conversion of syngas[J]. Chinese Science Bulletin, 2021, 66(10): 1157-1169.
|
4 |
ZAIN M M, MOHAMED A R. An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 56-63.
|
5 |
阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10): 3850-3857.
|
|
RUAN Yongzhe, LU Yao, WANG Shengping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3850-3857.
|
6 |
林俊明, 岑洁, 李正甲, 等. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209.
|
|
LIN Junming, CEN Jie, LI Zhengjia, et al. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 201-209.
|
7 |
史健, 祝星, 李孔斋, 等. 甲烷干重整及金属-载体相互作用[J]. 石油学报(石油加工), 2020, 36(6): 1407-1418.
|
|
SHI Jian, ZHU Xing, LI Kongzhai, et al. Dry reforming of methane and metal-support interactions[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1407-1418.
|
8 |
郑幼松, 邹宗鹏, 吕莉, 等. 甲烷干重整抗失活镍基催化剂研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(6): 1-8, 16.
|
|
ZHENG Yousong, ZOU Zongpeng, Li LYU, et al. Research progress of anti-deactivation nickel based catalysts for dry reforming of methane[J]. Natural Gas Chemical Industry, 2021, 46(6): 1-8, 16.
|
9 |
LI Xinyu, LI Di, TIAN Hao, et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 202: 683-694.
|
10 |
SORCAR S, DAS J, KOMARALA E P, et al. Design of coke-free methane dry reforming catalysts by molecular tuning of nitrogen-rich combustion precursors[J]. Materials Today Chemistry, 2022, 24: 100765.
|
11 |
SASSON B J, HE T, NESTLER E, et al. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane[J]. Journal of Energy Chemistry, 2022, 68: 124-142.
|
12 |
TORREZ-HERRERA J J, KORILI S A, GIL A. Bimetallic (Pt-Ni) La-hexaaluminate catalysts obtained from aluminum saline slags for the dry reforming of methane[J]. Chemical Engineering Journal, 2022, 433: 133191.
|
13 |
AHMAD Y H, MOHAMED A T, KUMAR A, et al. Solution combustion synthesis of Ni/La2O3 for dry reforming of methane: Tuning the basicity via alkali and alkaline earth metal oxide promoters[J]. RSC Advances, 2021, 11(53): 33734-33743.
|
14 |
DELIR K N P, BEKHEET M F, BONMASSAR N, et al. Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts[J]. Catalysis Science & Technology, 2022, 12(4): 1229-1244.
|
15 |
DAS S, PÉREZ-RAMÍREZ J, GONG J L, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J]. Chemical Society Reviews, 2020, 49(10): 2937-3004.
|
16 |
蔡雨露, 田静卓, 张晓雪, 等. 镍基核壳结构催化剂的制备及其在甲烷二氧化碳催化重整中的应用[J]. 天然气化工(C1化学与化工), 2020, 45(1): 103-107.
|
|
CAI Yulu, TIAN Jingzhuo, ZHANG Xiaoxue, et al. Preparation of nickel-based core-shell catalysts and their application in carbon dioxide reforming of methane[J]. Natural Gas Chemical Industry, 2020, 45(1): 103-107.
|
17 |
ZHANG Junshe, LI Fanxing. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 176/177: 513-521.
|
18 |
PENG Honggen, ZHANG Xianhua, ZHANG Li, et al. One-pot facile fabrication of multiple nickel nanoparticles confined in microporous silica giving a multiple-cores@shell structure as a highly efficient catalyst for methane dry reforming[J]. ChemCatChem, 2017, 9(1): 127-136.
|
19 |
PANG Yijun, ZHONG Aihua, XU Zhijia, et al. How do core-shell structure features impact on the activity/stability of the Co-based catalyst in dry reforming of methane?[J]. ChemCatChem, 2018, 10(13): 2845-2857.
|
20 |
YANG Juanjuan, WANG Jiaqi, ZHAO Jingjing, et al. CO2 conversion via dry reforming of methane on a core-shell Ru@SiO2 catalyst[J]. Journal of CO2 Utilization, 2022, 57: 101893.
|
21 |
ZHAO Yu, LI Hui, LI Hexing. NiCo@SiO2 core-shell catalyst with high activity and long lifetime for CO2 conversion through DRM reaction[J]. Nano Energy, 2018, 45: 101-108.
|
22 |
LIU Wenming, LI Le, LIN Sixue, et al. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming[J]. Journal of Energy Chemistry, 2022, 65: 34-47.
|
23 |
BIAN Zhoufeng, KAWI Sibudjing. Sandwich-likesilica@Ni@silica multicore-shell catalyst for the low-temperature dry reforming of methane: Confinement effect against carbon formation[J]. ChemCatChem, 2018, 10(1): 320-328.
|
24 |
BIAN Z F, SURYAWINATA I Y, KAWI S. Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2016, 195: 1-8.
|
25 |
ZHAO Xiaoyuan, LI Hongrui, ZHANG Jianping, et al. Design and synthesis of NiCe@m-SiO2 yolk-shell framework catalysts with improved coke-and sintering-resistance in dry reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2447-2456.
|
26 |
LI Ziwei, MO Liuye, KATHIRASER Yasotha, et al. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5): 1526-1536.
|
27 |
PANG Yijun, DOU Yixuan, ZHONG Aihua, et al. Nanostructured Ru-Co@SiO2: Highly efficient yet durable for CO2 reforming of methane with a desirable H2/CO ratio[J]. Applied Catalysis A: General, 2018, 555: 27-35.
|
28 |
WANG Changzhen, WU Hao, Xiangyu JIE, et al. Yolk-shell nanocapsule catalysts as nanoreactors with various shell structures and their diffusion effect on the CO2 reforming of methane[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31699-31709.
|
29 |
LI Yunhua, WANG Yaquan, ZHANG Xiangwen, et al. Thermodynamic analysis of autothermal steam and CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2008, 33(10): 2507-2514.
|
30 |
CHAI Ruijuan, ZHAO Guofeng, ZHANG Zhiqiang, et al. High sintering-/coke-resistance Ni@SiO2/Al2O3/FeCrAl-fiber catalyst for dry reforming of methane: One-step, macro-to-nano organization via cross-linking molecules[J]. Catalysis Science & Technology, 2017, 7(23): 5500-5504.
|
31 |
NAKAMURA J, AIKAWA K, SATO K, et al. Role of support in reforming of CH4 with CO2 over Rh catalysts[J]. Catalysis Letters, 1994, 25(3/4): 265-270.
|
32 |
HUANG Qiong, FANG Xiuzhong, CHENG Qinzhen, et al. Synthesis of a highly active and stable nickel-embedded alumina catalyst for methane dry reforming: On the confinement effects of alumina shells for nickel nanoparticles[J]. ChemCatChem, 2017, 9(18): 3563-3571.
|
33 |
BAKTASH E, LITTLEWOOD P, SCHOMäCKER R, et al. Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 179: 122-127.
|
34 |
WANG S B, LU G Q, MILLAR G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art[J]. Energy & Fuels, 1996, 10(4): 896-904.
|
35 |
GOULD T, IZAR A, WEIMER A, et al. Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions[J]. ACS Catalysis, 2014, 4: 2714-2717.
|
36 |
ZHAO Yu, KANG Yunqing, LI Hui, et al. CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability[J]. Green Chemistry, 2018, 20(12): 2781-2787.
|
37 |
DAI Hui, ZHU Yongqing, XIONG Siqi, et al. Dry reforming of methane over Ni/MgO@Al catalysts with unique features of sandwich structure[J]. Chemistryselect, 2021, 6(48): 13862-13872.
|
38 |
HAN J W, PARK J S, CHOI M S, et al. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2017, 203: 625-632.
|
39 |
TANG Chengli, LV Liping, ZHANG Limei, et al. High carbon-resistance Ni@CeO2 core-shell catalysts for dry reforming of methane[J]. Kinetics and Catalysis, 2017, 58(6): 800-808.
|
40 |
HAN Kaihang, YU Weishu, XU Leilei, et al. Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst[J]. Fuel, 2021, 291: 120182.
|
41 |
LI Ziwei, SIBUDJING Kawi. Facile synthesis of multi-Ni-core@Ni phyllosilicate@CeO2 shell hollow spheres with high oxygen vacancy concentration for dry reforming of CH4 [J]. ChemCatChem, 2018, 10(14): 2994-3001.
|
42 |
任枭雄, 邱泽刚, 李志勤. ZrO2制备方法研究进展[J]. 煤化工, 2021, 49(1): 18-22.
|
|
REN Xiaoxiong, QIU Zegang, LI Zhiqin. Research progress on preparation method of ZrO2 [J]. Coal Chemical Industry, 2021, 49(1): 18-22.
|
43 |
DOU Jian, ZHANG Riguang, HAO Xiaobin, et al. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2019, 254: 612-623.
|
44 |
DAI Chengyi, ZHANG Shaohua, ZHANG Anfeng, et al. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(32): 16461-16468.
|