1 |
YU Yanshuang, CHEN Longjun, FANG Yu, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380: 120862.
|
2 |
DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
|
3 |
MAKOWSKA Nicoletta, KOCZURA Ryszard, MOKRACKA Joanna. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water[J]. Chemosphere, 2016, 144: 1665-1673.
|
4 |
Henrik JOHANSSON C, JANMAR Lisa, BACKHAUS Thomas. Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria[J]. Aquatic Toxicology, 2014, 156: 248-258.
|
5 |
WILLYARD Cassandra. Drug-resistant bacteria ranked[J]. Nature, 2017, 543(7643): 15.
|
6 |
XIAO Tingting, TANG Zheng, YANG Yong, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2018, 220: 417-428.
|
7 |
PUDUKUDY Manoj, HETIEQA Ain, YAAKOB Zahira. Synthesis, characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures[J]. Applied Surface Science, 2014, 319: 221-229.
|
8 |
AN Xiaoqiang, YU Jimmy C, WANG Yu, et al. WO3nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry, 2012, 22(17): 8525-8531.
|
9 |
WEI Lijuan, ZHANG Haiming, CAO Jing. Electrospinning of Ag/ZnWO4/WO3 composite nanofibers with high visible light photocatalytic activity[J]. Materials Letters, 2019, 236: 171-174.
|
10 |
BI Qiang, GAO Yue, DANG Chenxuan, et al. Study on the photoelectrocatalytic performance of a WO3 thin film electrode by constructing a BiOI/WO3 heterojunction[J]. CrystEngComm, 2019, 21(44): 6744-6757.
|
11 |
DENG Fang, LUO Yingbo, LI Hui, et al. Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOCl x I1- x, BiOBr x I1- x and BiOCl x Br1- x solid solution with internal hole-scavenging capacity via the synergy of adsorption and photocatalytic reduction[J]. Journal of Hazardous Materials, 2020, 383: 121127.
|
12 |
马雄, 陈凯怡, 牛斌, 等. BiOCl0.9I0.1/β-Bi2O3复合材料在模拟太阳光下光催化降解盐酸四环素性能[J]. 催化学报, 2020, 41(10): 1535-1543.
|
|
MA Xiong, CHEN Kaiyi, NIU Bin, et al. Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight[J]. Chinese Journal of Catalysis, 2020, 41(10):1535-1543.
|
13 |
陈厚望, 刘宏, 张鹏, 等. Ag3PO4/AgI光催化剂的制备及降解2-氨基-4-乙酰氨基苯甲醚机理[J]. 化工进展, 2021, 40(8): 4268-4277.
|
|
CHEN Houwang, LIU Hong, ZHANG Peng, et al. Preparation of Ag3PO4/AgI photocatalyst and its mechanism of AMA degradation[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4268-4277.
|
14 |
XIAO Yepeng, LIU Jincheng, Jijin MAI, et al. High-performance silver nanoparticles coupled with monolayer hydrated tungsten oxide nanosheets: the structural effects in photocatalytic oxidation of cyclohexane[J]. Journal of Colloid and Interface Science, 2018, 516: 172-181.
|
15 |
HUANG Hongwei, ZENG Chao, XIAO Ke, et al. Coupling of solid-solution and heterojunction in a 2D-1D core-shell-like BiOCl0.5I0.5/Bi5O7I hierarchy for promoting full-spectrum photocatalysis and molecular oxygen activation[J]. Journal of Colloid and Interface Science, 2017, 504: 257-267.
|
16 |
WANG Baoying, LI Lun, CHEN Jiakuan, et al. Synthesis of BiOCl0.5I0.5/TiO2 heterojunctions with enhanced visible-light photocatalytic properties[J]. Journal of Nanoparticle Research, 2018, 20(7): 1-13.
|
17 |
MAISANG Wachiraporn, PROMNOPAS Surin, KAOWPHONG Sulawan, et al. Microwave-assisted hydrothermal synthesis of BiOBr/BiOCl flowerlike composites used for photocatalysis[J]. Research on Chemical Intermediates, 2020, 46(4): 2117-2135.
|
18 |
LIU Zhangsheng, WANG Jinxiang. Face-to-face BiOCl/BiO2- x heterojunction composites with highly efficient charge separation and photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 832: 153771.
|
19 |
ZHANG Xia, WANG Daolei, MAN Xiaokun, et al. Influence of BiOIO3 morphology on the photocatalytic efficiency of Z-scheme BiOIO3/g-C3N4 heterojunctioned composite for Hg0 removal[J]. Journal of Colloid and Interface Science, 2020, 558: 123-136.
|
20 |
QI Yiling, ZHENG Yifan, SONG Xuchun. Synthesis and enhanced visible light photocatalytic activity of WO3-BiOCl x Br1- x heterojunctions with tunable energy band structure[J]. Ceramics International, 2017, 43(15): 12302-12310.
|
21 |
LI Bolun, SONG Haiyan, HAN Fuqin, et al. Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation[J]. Applied Catalysis B: Environmental, 2020, 269: 118845.
|
22 |
WANG Qizhao, HUI Juan, LI Jiajia, et al. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation[J]. Applied Surface Science, 2013, 283: 577-583.
|
23 |
LU Yun, SONG Jimei, LI Wenfang, et al. Preparation of BiOCl/Bi2S3 composites by simple ion exchange method for highly efficient photocatalytic reduction of Cr6+ [J]. Applied Surface Science, 2020, 506: 145000.
|
24 |
SHAMAILA Sajjad, SAJJAD Ahmed Khan Leghari, CHEN Feng, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst[J]. Journal of Colloid and Interface Science, 2011, 356(2): 465-472.
|
25 |
PARK Yohan, NA Yulyi, PRADHAN Debabrata, et al. Adsorption and UV/Visible photocatalytic performance of BiOI for methyl orange, Rhodamine B and methylene blue: Ag and Ti-loading effects[J]. CrystEngComm, 2014, 16(15): 3155-3167.
|
26 |
Y Ashok Kumar REDDY, AJITHA B, SREEDHAR Adem, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582.
|
27 |
YUE Peng, ZHANG Guoqiang, CAO Xingzhong, et al. In situ synthesis of Z-scheme BiPO4/BiOCl0.9I0.1 heterostructure with multiple vacancies and valence for efficient photocatalytic degradation of organic pollutant[J]. Separation and Purification Technology, 2019, 213: 34-44.
|
28 |
Dávidné NAGY, FIRKALA Tamás, Eszter DROTÁR, et al. Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2 [J]. RSC Advances, 2016, 6(98): 95369-95377.
|
29 |
LI Chunmei, CHEN Gang, SUN Jingxue, et al. Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property[J]. Applied Catalysis B: Environmental, 2015, 163: 415-423.
|
30 |
黄文鑫, 魏虎, 蒋彩云, 等. Bi2MoO6/Bi2S3异质结光催化降解四环素-铜复合物[J]. 环境科学, 2020, 41(12): 5488-5499.
|
|
HUANG Wenxin, WEI Hu, JIANG Caiyun, et al. Photocatalytic degradation of tetracycline and copper complex by Bi2MoO6/Bi2S3 heterojunction[J]. Environmental Science, 2020, 41(12): 5488-5499.
|
31 |
XIAO Xin, WANG Yihui, BO Qiu, et al. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance[J]. Dalton Transactions, 2020, 49(24): 8041-8050.
|
32 |
TANG Xiaolong, LIU Huanhuan, YANG Cai, et al. In-situ fabrication of Z-scheme CdS/BiOCl heterojunctions with largely improved photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599: 124880.
|
33 |
HU Yue, HAO Xuqiang, CUI Zhiwei, et al. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 260: 118131.
|