化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1869-1876.DOI: 10.16085/j.issn.1000-6613.2022-1022
田园1,2(), 娄舒洁1(), 孟闪茹1, 闫敬如1,2, 肖海成1
收稿日期:
2022-05-31
修回日期:
2022-09-17
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
娄舒洁
作者简介:
田园(1997—),男,硕士研究生,研究方向为碳一化工。E-mail:tianyuan9709@163.com。
基金资助:
TIAN Yuan1,2(), LOU Shujie1(), MENG Shanru1, YAN Jingru1,2, XIAO Haicheng1
Received:
2022-05-31
Revised:
2022-09-17
Online:
2023-04-25
Published:
2023-05-08
Contact:
LOU Shujie
摘要:
6个碳原子以上的高碳醇,在工业领域有着广泛的应用。合成气制备高碳醇原料来源广泛、技术路线短。钴基催化剂利用Co0相解离CO、促进碳链增长的能力,引入Cu和Co2C相促进CO的非解离活化以调控醇类的选择性。本文综述了近年来钴基合成气制备高碳醇催化剂的研究进展,指出活性相在反应条件下的均匀分散是高选择性生成C6+OH的关键,可以通过对催化剂表面预处理或利用水滑石、钙钛矿等结构促进分散。载体和助剂通过影响表面金属的偏析或者CoCx相的生成来影响反应性能。文中指出:需要开发表面态的精确表征与可控合成技术,研究催化剂结构、反应网络在反应气氛下的动态变化,提升高碳醇的选择性与催化剂寿命。
中图分类号:
田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876.
TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876.
催化剂 | 反应条件 | CO转化率 /% | 选择性/% | 醇类选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
HC | ROH | CO2 | C1OH | C2~5OH | C6+OH | ||||
Cu@(CuCo-alloy)/Al2O3(Cu∶Co=2∶1) | 220℃, 2MPa, H2/CO=2, GHSV=2000mL/(gcat·t) | 21.5 | 42.2 | 50.6 | 7.2 | 19.2 | 31.9 | 48.9 | [ |
15Co4Cu4Mn | 220℃, 3MPa, GHSV=500/h | 52.2 | 72.7 | 23.5 | 3.8 | 6.6 | 54.2 | 39.2 | [ |
Co/3GO-OMS | 225℃, 3MPa, H2/CO=2, GHSV=10800mL/(gcat·h) | 35.4 | 56.2 | 43.3 | 0.5 | 44.3 | 52.6 | 3.1 | [ |
15Co-5Fe/AC | 220℃, 3MPa, GHSV=4Lsyngas/(gcat·t) | 30.9 | 80.4 | 18.1 | 1.5 | 11.4 | 57.5 | 31.0 | [ |
0.5La-Co/AC | 220℃, 3MPa, GHSV=1500/h | 21.4 | 56.0 | 38.9 | 5.1 | 7.7 | 58.1 | 34.2 | [ |
0.01Li-Co/AC | 220℃, 3MPa, GHSV=500/h | 29.4 | 67.7 | 31.2 | 1.1 | 4.9 | 48.2 | 56.9 | [ |
15Co-2.1SiO2/AC | 220℃, 3MPa, GHSV=500/h | 52.7 | 73.2 | 25.9 | 0.9 | 4.2 | 37.7 | 58.5 | [ |
表1 部分文献报道的合成气制高碳醇Co基催化剂反应性能
催化剂 | 反应条件 | CO转化率 /% | 选择性/% | 醇类选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
HC | ROH | CO2 | C1OH | C2~5OH | C6+OH | ||||
Cu@(CuCo-alloy)/Al2O3(Cu∶Co=2∶1) | 220℃, 2MPa, H2/CO=2, GHSV=2000mL/(gcat·t) | 21.5 | 42.2 | 50.6 | 7.2 | 19.2 | 31.9 | 48.9 | [ |
15Co4Cu4Mn | 220℃, 3MPa, GHSV=500/h | 52.2 | 72.7 | 23.5 | 3.8 | 6.6 | 54.2 | 39.2 | [ |
Co/3GO-OMS | 225℃, 3MPa, H2/CO=2, GHSV=10800mL/(gcat·h) | 35.4 | 56.2 | 43.3 | 0.5 | 44.3 | 52.6 | 3.1 | [ |
15Co-5Fe/AC | 220℃, 3MPa, GHSV=4Lsyngas/(gcat·t) | 30.9 | 80.4 | 18.1 | 1.5 | 11.4 | 57.5 | 31.0 | [ |
0.5La-Co/AC | 220℃, 3MPa, GHSV=1500/h | 21.4 | 56.0 | 38.9 | 5.1 | 7.7 | 58.1 | 34.2 | [ |
0.01Li-Co/AC | 220℃, 3MPa, GHSV=500/h | 29.4 | 67.7 | 31.2 | 1.1 | 4.9 | 48.2 | 56.9 | [ |
15Co-2.1SiO2/AC | 220℃, 3MPa, GHSV=500/h | 52.7 | 73.2 | 25.9 | 0.9 | 4.2 | 37.7 | 58.5 | [ |
1 | 张玉林. 几种阴离子表面活性剂的国内市场[J]. 中国洗涤用品工业, 2020(2): 67-74. |
ZHANG Yulin. An introduction on several anion surfactants in China market[J]. China Cleaning Industry, 2020(2): 67-74. | |
2 | 蔡力宏, 梁雪美. 高碳醇的市场应用及煤基费托合成高碳醇的生产工艺[J]. 合成材料老化与应用, 2017, 46(6): 123-127. |
CAI Lihong, LIANG Xuemei. Application of higher alcohol and technology of Fischer-Tropsch higher alcohol[J]. Synthetic Materials Aging and Application, 2017, 46(6): 123-127. | |
3 | AO Min, PHAM G H, SUNARSO J, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catalysis, 2018, 8(8): 7025-7050. |
4 | XIAO Kang, BAO Zhenghong, QI Xingzhen, et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chinese Journal of Catalysis, 2013, 34(1): 116-129. |
5 | LIU Chang, CUI Xueying, SONG Yonghong, et al. The active nature of crystal MoS2 for converting sulfur-containing syngas[J]. ChemCatChem, 2019, 11(3): 1112-1122. |
6 | 魏晓娜, 李文双, 王闯, 等. 铑基催化剂在合成气制乙醇中的研究进展[J]. 应用化工, 2020, 49(9): 2388-2392. |
WEI Xiaona, LI Wenshuang, WANG Chuang, et al. Research progress of Rh-based catalysts in the synthesis of ethanol from syngas[J]. Applied Chemical Industry, 2020, 49(9): 2388-2392. | |
7 | YANG Yanzhang, WANG Lei, XIAO Kang, et al. Elucidation of reaction network of higher alcohol synthesis over modified FT catalysts by probe molecule experiments[J]. Catalysis Science & Technology, 2015, 5(8): 4224-4232. |
8 | DING Mingyue, QIU Minghuang, LIU Jianguo, et al. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for higher alcohols synthesis[J]. Fuel, 2013, 109: 21-27. |
9 | LU Yongwu, CAO Baobao, YU Fei, et al. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe catalysts[J]. ChemCatChem, 2014, 6(2): 473-478. |
10 | SUGIER A, FREUND E. Process for manufacturing alcohols and more particularly saturated linear primary alcohols from synthesis gas: US04291126[P]. 1981-09-22. |
11 | 丁云杰. 煤经合成气制乙醇和混合高碳伯醇的研究进展[J]. 煤化工, 2018, 46(1): 1-5. |
DING Yunjie. Research progress of synthesis of ethanol and mixed high carbon primary alcohols from syngas derived from coal[J]. Coal Chemical Industry, 2018, 46(1): 1-5. | |
12 | LIN Tiejun, YU Fei, AN Yunlei, et al. Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity[J]. Accounts of Chemical Research, 2021, 54(8): 1961-1971. |
13 | LUK H T, MONDELLI C, FERRÉ D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. |
14 | 刘竞舸, 闫国春, 房克功, 等. 合成气制混合醇催化剂研究进展[J]. 化学试剂, 2021, 43(10): 1369-1375. |
LIU Jingge, YAN Guochun, FANG Kegong, et al. Research progress of catalysts for mixed alcohol synthesis from syngas[J]. Chemical Reagents, 2021, 43(10): 1369-1375. | |
15 | SUN Kai, GAO Xiaofeng, BAI Yunxing, et al. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catalysis Science & Technology, 2018, 8(15): 3936-3947. |
16 | YU Yingzhe, ZHANG Jie, SUN Xuanyu, et al. Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study[J]. Surface Science, 2020, 691: 121513. |
17 | SHUI Meiling, HUANG Chao, MA Peiyu, et al. Accelerating C2+ alcohols synthesis from syngas by simultaneous optimizations of CO dissociation and chain growth over CuCo alloy catalyst[J]. Chinese Chemical Letters, 2021, 32(7): 2203-2206. |
18 | PRIETO G, BEIJER S, SMITH M L, et al. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angewandte Chemie International Edition, 2014, 53(25): 6397-6401. |
19 | SUBRAMANIAN N D, BALAJI G, KUMAR C S S R, et al. Development of cobalt-copper nanoparticles as catalysts for higher alcohol synthesis from syngas[J]. Catalysis Today, 2009, 147(2): 100-106. |
20 | PEI Yanpeng, LIU Jinxun, ZHAO Yonghui, et al. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface[J]. ACS Catalysis, 2015, 5(6): 3620-3624. |
21 | WANG Baojun, LIANG Danli, GUAN Zun, et al. Understanding the key step of Co2C-catalyzed Fischer-Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2020, 124(10): 5749-5758. |
22 | WANG Baojun, LIANG Danli, ZHANG Riguang, et al. Crystal facet dependence for the selectivity of C2 species over Co2C catalysts in the Fischer-Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2018, 122(51): 29249-29258. |
23 | GÖBEL C, SCHMIDT S, FROESE C, et al. The steady-state kinetics of CO hydrogenation to higher alcohols over a bulk Co-Cu catalyst[J]. Journal of Catalysis, 2021, 394: 465-475. |
24 | GÖBEL C, SCHMIDT S, FROESE C, et al. Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure[J]. Journal of Catalysis, 2020, 383: 33-41. |
25 | WANG Jingjuan, CHERNAVSKII P A, WANG Ye, et al. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103: 1111-1122. |
26 | MENDES L V P, SNIDER J L, FLEISCHMAN S D, et al. Polyol synthesis of cobalt-copper alloy catalysts for higher alcohol synthesis from syngas[J]. Catalysis Letters, 2017, 147(9): 2352-2359. |
27 | YANG Yanzhang, QI Xingzhen, WANG Xinxing, et al. Deactivation study of CuCo catalyst for higher alcohol synthesis via syngas[J]. Catalysis Today, 2016, 270: 101-107. |
28 | LIU Guilong, NIU Ting, PAN Dongming, et al. Preparation of bimetal Cu-Co nanoparticles supported on meso-macroporous SiO2 and their application to higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2014, 483: 10-18. |
29 | LIU Guilong, GENG Yuxia, PAN Dongming, et al. Bi-metal Cu-Co from LaCo1- x Cu x O3 perovskite supported on zirconia for the synthesis of higher alcohols[J]. Fuel Processing Technology, 2014, 128: 289-296. |
30 | DONG Xin, LIANG Xuelian, LI Haiyan, et al. Preparation and characterization of carbon nanotube-promoted Co-Cu catalyst for higher alcohol synthesis from syngas[J]. Catalysis Today, 2009, 147(2): 158-165. |
31 | ZHANG Hongbin, LIANG Xuelian, DONG Xin, et al. Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols[J]. Catalysis Surveys from Asia, 2009, 13(1): 41-58. |
32 | FAN Siqi, WANG Yue, LI Zhuoshi, et al. Graphene oxide-ordered mesoporous silica composite supported Co-based catalysts for CO hydrogenation to higher alcohols[J]. Applied Catalysis A: General, 2019, 583: 117123. |
33 | PEI Yanpeng, DING Yunjie, ZANG Juan, et al. Fischer-Tropsch synthesis: Characterizing and reaction testing of Co2C/SiO2 and Co2C/Al2O3 catalysts[J]. Chinese Journal of Catalysis, 2015, 36(2): 252-259. |
34 | PEI Yanpeng, DING Yunjie, ZHU Hejun, et al. One-step production of C1—C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2 [J]. Chinese Journal of Catalysis, 2015, 36(3): 355-361. |
35 | CHEN Tianyuan, SU Junjie, ZHANG Zhengpai, et al. Structure evolution of Co-CoO x interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catalysis, 2018, 8(9): 8606-8617. |
36 | 王欢, 唐浩东, 卢保同, 等. 炭载体对钴基催化剂制混合醇的影响[J]. 天然气化工(C1化学与化工), 2014, 39(5): 7-11. |
WANG Huan, TANG Haodong, LU Baotong, et al. Effects of Co-based catalysts supported on different carbons on synthesis of mixed higher alcohols from syngas[J]. Natural Gas Chemical Industry, 2014, 39(5): 7-11. | |
37 | JIAO Guiping, DING Yunjie, ZHU Hejun, et al. Synthesis of linear mixed high alcohols from syngas over activated carbon-supported Co-based catalysts[J]. Chinese Journal of Catalysis, 2009, 30(8): 825-829. |
38 | ZENG Zhuang, LI Zhuoshi, GUAN Tong, et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: Evolution of active sites and Na promoting effect[J]. Journal of Catalysis, 2022, 405: 430-444. |
39 | TIEN-THAO N, ZAHEDI-NIAKI M H, ALAMDARI H, et al. Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis[J]. Journal of Catalysis, 2007, 245(2): 348-357. |
40 | 董文达, 朱何俊, 丁云杰, 等. 微量Li助剂对Co/AC催化剂合成高碳醇性能的影响[J]. 物理化学学报, 2014, 30(9): 1745-1751. |
DONG Wenda, ZHU Hejun, DING Yunjie, et al. Effect of trace amounts of Li doping on performance of Co/AC catalysts for syntheses of mixed linear α-alcohols[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1745-1751. | |
41 | LI Liusha, LIN Tiejun, LI Xiao, et al. Control of Co0/Co2C dual active sites for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2020, 602: 117704. |
42 | DU Hong, JIANG Miao, ZHAO Ziang, et al. Alcohol synthesis via Fischer-Tropsch synthesis over activated carbon supported alkaline earth modified cobalt catalyst[J]. Catalysis Letters, 2021, 151(12): 3632-3638. |
43 | PATERSON J, PARTINGTON R, PEACOCK M, et al. Elucidating the role of bifunctional cobalt-manganese catalyst interactions for higher alcohol synthesis[J]. European Journal of Inorganic Chemistry, 2020, 2020(24): 2312-2324. |
44 | LIAO Peiyi, ZHANG Chen, ZHANG Lijun, et al. Higher alcohol synthesis via syngas over CoMn catalysts derived from hydrotalcite-like precursors[J]. Catalysis Today, 2018, 311: 56-64. |
45 | GAO Shan, LIU Nan, LIU Jia, et al. Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1- x Mn x O3 perovskites: Effect of the partial substitution of Co by Mn[J]. Fuel, 2020, 261: 116415. |
46 | ZHAO Ziang, LU Wei, YANG Ruoou, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catalysis, 2018, 8(1): 228-241. |
47 | WANG Zi, SPIVEY J J. Effect of ZrO2, Al2O3 and La2O3 on cobalt-copper catalysts for higher alcohols synthesis[J]. Applied Catalysis A: General, 2015, 507: 75-81. |
48 | ZHAO Ziang, LU Wei, ZHU Hejun, et al. Tuning the Fischer-Tropsch reaction over Co x Mn y La/AC catalysts toward alcohols: Effects of La promotion[J]. Journal of Catalysis, 2018, 361: 156-167. |
49 | JIAO Guiping, DING Yunjie, ZHU Hejun, et al. Effect of La2O3 doping on syntheses of C1—C18 mixed linear α-alcohols from syngas over the Co/AC catalysts[J]. Applied Catalysis A: General, 2009, 364(1/2): 137-142. |
50 | DENG Siyu, CHU Wei, XU Huiyuan, et al. Effects of impregnation sequence on the microstructure and performances of Cu-Co based catalysts for the synthesis of higher alcohols[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 369-373. |
51 | XU Huiyuan, CHU Wei, SHI Limin, et al. Effects of glow discharge plasma on Cu-Co-Al-based supported catalysts for higher alcohol synthesis[J]. Reaction Kinetics and Catalysis Letters, 2009, 97(2): 243-247. |
52 | YANG Yifei, JIA Litao, HOU Bo, et al. Incorporation of highly dispersed cobalt nanoparticles into the ordered mesoporous carbon for CO hydrogenation[J]. Catalysis Letters, 2014, 144(1): 133-141. |
53 | FENG Wei, WANG Qingwei, JIANG Biao, et al. Carbon nanotubes coated on silica gels as a support of Cu-Co catalyst for the synthesis of higher alcohols from syngas[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11067-11072. |
54 | DU Hong, ZHU Hejun, ZHAO Ziang, et al. Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2016, 523: 263-271. |
55 | CHEN Gaofeng, FENG Yunchao, WANG Zhiwei, et al. In situ encapsulated CuCo@M-SiO2 for higher alcohol synthesis from biomass-derived syngas[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5910-5923. |
56 | SHI Limin, CHU Wei, DENG Siyu. Catalytic properties of Cu-Co catalysts supported on HNO3-pretreated CNTs for higher-alcohol synthesis[J]. Journal of Natural Gas Chemistry, 2011, 20(1): 48-52. |
57 | NEBEL J, SCHMIDT S, PAN Qiushi, et al. On the role of cobalt carbidization in higher alcohol synthesis over hydrotalcite-based Co-Cu catalysts[J]. Chinese Journal of Catalysis, 2019, 40(11): 1731-1740. |
58 | FANG Y Z, LIU Y, ZHANG L H. LaFeO3-supported nano Co-Cu catalysts for higher alcohol synthesis from syngas[J]. Applied Catalysis A: General, 2011, 397(1/2): 183-191. |
59 | GAO Wa, ZHAO Yufei, CHEN Haoran, et al. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
60 | LI Yihui, ZHAO Ziang, LU Wei, et al. Highly selective conversion of syngas to higher oxygenates over tandem catalysts[J]. ACS Catalysis, 2021, 11(24): 14791-14802. |
61 | PEI Yanpeng, JIAN Siping, CHEN Yuanyuan, et al. Synthesis of higher alcohols by the Fischer-Tropsch reaction over activated carbon supported CoCuMn catalysts[J]. RSC Advances, 2015, 5(93): 76330-76336. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[3] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[4] | 薛马晨, 杨伯伦, 夏春谷, 朱刚利. 乙醇缩合制高碳醇(C6+醇)多相催化剂研究进展[J]. 化工进展, 2023, 42(1): 194-203. |
[5] | 李婉麒, 杨凤娟, 贾德臣, 姜卫红, 顾阳. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
[6] | 邓少碧, 边洲峰. 核壳结构在甲烷干重整中的应用[J]. 化工进展, 2023, 42(1): 247-254. |
[7] | 张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214. |
[8] | 石轩, 杨东元, 胡浩斌, 王焦飞, 张壮壮, 贺建勋, 代成义, 马晓迅. 苯与合成气在ZnAlCrO x &HZSM-5双功能催化剂上一步法制甲苯/二甲苯[J]. 化工进展, 2022, 41(S1): 247-259. |
[9] | 曹正凯, 米晓斌, 吴子明, 孙士可, 曹均丰, 彭德强, 梁相程. 煤合成气净化除尘装置压降问题分析及应用优化[J]. 化工进展, 2022, 41(S1): 15-21. |
[10] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
[11] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[12] | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
[13] | 储根云, 范英杰, 张大伟, 高明林, 梅树美, 杨庆春. 煤制乙二醇关键单元技术与低碳集成工艺的研究进展[J]. 化工进展, 2022, 41(3): 1654-1666. |
[14] | 华亚妮, 冯少广, 党欣悦, 郝文斌, 张保文, 高展. CO2电催化还原产合成气研究进展[J]. 化工进展, 2022, 41(3): 1224-1240. |
[15] | 邵斌, 孙哲毅, 章云, 潘冯弘康, 赵开庆, 胡军, 刘洪来. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |