化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4754-4766.DOI: 10.16085/j.issn.1000-6613.2021-2344
收稿日期:
2021-11-15
修回日期:
2022-02-15
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
王传明
作者简介:
胡文德(1991—),男,博士,研究方向为计算催化。E-mail:huwd.sshy@sinopec.com。
基金资助:
HU Wende(), WANG Yangdong, WANG Chuanming()
Received:
2021-11-15
Revised:
2022-02-15
Online:
2022-09-25
Published:
2022-09-27
Contact:
WANG Chuanming
摘要:
合成气直接催化转化制乙烯、丙烯等低碳烯烃因具有原料来源广泛、流程较短等优点,成为目前合成气催化转化和烯烃制备技术的一个重要发展方向。本文首先介绍了合成气经费托合成直接制备低碳烯烃的路线(FTO),简单概括了铁基和钴基催化剂的研究进展以及催化反应机理。随后重点综述了近年来提出并发展的基于双功能催化体系的合成气直接制低碳烯烃路线(STO),详细阐述了金属氧化物的组成、配比等以及分子筛的酸性、孔道等性质对反应性能的影响,同时讨论了双功能催化体系以乙烯酮或甲醇/二甲醚为关键中间体的催化反应机理。最后对双功能催化体系的研究方向和挑战进行了展望。
中图分类号:
胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766.
HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766.
CO活化组分 | C—C耦合组分 | 温度/℃ | 压力/MPa | 空速 /mL·g-1· h-1 | H2/CO比 | CO 转化率/% | CO2选择性/% | 烃类产物选择性/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2=~C4= | C2~C4 | C5+ | |||||||||
ZnCrO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 17 | 41 | 2 | 80 | 14 | 4 | [ |
ZnO-ZrO2 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 7 | 43 | 4 | 69 | 25 | 2 | [ |
Zr-In2O3 | SAPO-34 | 400 | 2.5 | 3600 | 1 | 28 | 40 | 4 | 74 | 20 | 2 | [ |
Cr-ZnO x | SAPO-34 | 400 | 2.0 | 1125 | 1 | 30 | 52 | 16 | 38 | 45 | — | [ |
ZnAlO x | SAPO-34 | 390 | 4.0 | 12000 | 1 | 7 | 33 | 5 | 78 | 13 | 4 | [ |
Zr-Zn/Al2O3 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 8 | 46 | 13 | 70 | 17 | — | [ |
Zn/Al2O3 | SAPO-34 | 370 | 1.0 | 3600 | 2 | 5 | 45 | 10 | 77 | 13 | 0 | [ |
MnGaO x | SAPO-34 | 400 | 2.5 | 4875 | 2 | 14 | 45 | 2 | 88 | 8 | 2 | [ |
Zn x Ce2–y Zr y O4 | SAPO-34 | 300 | 1.0 | 5400 | 2 | 6 | 6 | 5 | 83 | 4 | 9 | [ |
ZnGa2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 30 | 41 | 5 | 77 | 17 | 2 | [ |
ZnAl2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 24 | 44 | 4 | 80 | 14 | 2 | [ |
Zn-CrO x | SAPO-34 | 400 | 2.0 | 6480 | 2 | 11 | 36 | 8 | 64 | 25 | 3 | [ |
MnO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 7 | 43 | 1 | 79 | 15 | 5 | [ |
ZnO | SAPO-34 | 400 | 4.0 | 1600 | 2.5 | 32 | 42 | 3 | 77 | 15 | 5 | [ |
Zn-ZrO2 | SSZ-13 | 400 | 3.0 | 3000 | 2 | 29 | 42 | 2 | 77 | 18 | 3 | [ |
ZnCrO x | SSZ-13 | 380 | 1.0 | 6000 | 2 | 20 | 49 | 6 | 72 | 15 | 7.5 | [ |
ZnCrO x | MOR | 360 | 2.0 | 1600 | 1 | 26 | 48 | 1 | 91 | 4 | 5 | [ |
ZnAl2O4 | MOR | 370 | 3.0 | 1500 | 1 | 10 | 44 | 5 | 77 | 12 | 6 | [ |
ZnCrO x | AlPO-18 | 390 | 10.0 | 3600 | 1 | 49 | 49 | 2 | 83 | 4 | 11 | [ |
ZnAlO x | SAPO-17 | 400 | 3.0 | 3000 | 2 | 23 | 42 | 13 | 66 | 14 | 7 | [ |
ZnAlO x | SAPO-18 | 400 | 3.0 | 3000 | 2 | 21 | 44 | 3 | 71 | 16 | 10 | [ |
ZnAlO x | SAPO-34 | 400 | 3.0 | 3000 | 2 | 24 | 44 | 4 | 81 | 14 | 1 | [ |
ZnCrO x | SAPO-18/34 | 390 | 4.0 | 6000 | 1 | 27 | 45-48 | 1 | 88 | 2 | 8 | [ |
K-MoS2 | SAPO-34 | 400 | 4.0 | 4000 | 1 | 20 | 50 | 15 | 59 | 22 | 4 | [ |
K-CoMoS | SAPO-34 | 400 | 4.0 | 4000 | 1 | 9 | 45 | 6 | 65 | 26 | 3 | [ |
表1 用于合成气直接催化转化制烯烃的代表性双功能催化体系
CO活化组分 | C—C耦合组分 | 温度/℃ | 压力/MPa | 空速 /mL·g-1· h-1 | H2/CO比 | CO 转化率/% | CO2选择性/% | 烃类产物选择性/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2=~C4= | C2~C4 | C5+ | |||||||||
ZnCrO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 17 | 41 | 2 | 80 | 14 | 4 | [ |
ZnO-ZrO2 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 7 | 43 | 4 | 69 | 25 | 2 | [ |
Zr-In2O3 | SAPO-34 | 400 | 2.5 | 3600 | 1 | 28 | 40 | 4 | 74 | 20 | 2 | [ |
Cr-ZnO x | SAPO-34 | 400 | 2.0 | 1125 | 1 | 30 | 52 | 16 | 38 | 45 | — | [ |
ZnAlO x | SAPO-34 | 390 | 4.0 | 12000 | 1 | 7 | 33 | 5 | 78 | 13 | 4 | [ |
Zr-Zn/Al2O3 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 8 | 46 | 13 | 70 | 17 | — | [ |
Zn/Al2O3 | SAPO-34 | 370 | 1.0 | 3600 | 2 | 5 | 45 | 10 | 77 | 13 | 0 | [ |
MnGaO x | SAPO-34 | 400 | 2.5 | 4875 | 2 | 14 | 45 | 2 | 88 | 8 | 2 | [ |
Zn x Ce2–y Zr y O4 | SAPO-34 | 300 | 1.0 | 5400 | 2 | 6 | 6 | 5 | 83 | 4 | 9 | [ |
ZnGa2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 30 | 41 | 5 | 77 | 17 | 2 | [ |
ZnAl2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 24 | 44 | 4 | 80 | 14 | 2 | [ |
Zn-CrO x | SAPO-34 | 400 | 2.0 | 6480 | 2 | 11 | 36 | 8 | 64 | 25 | 3 | [ |
MnO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 7 | 43 | 1 | 79 | 15 | 5 | [ |
ZnO | SAPO-34 | 400 | 4.0 | 1600 | 2.5 | 32 | 42 | 3 | 77 | 15 | 5 | [ |
Zn-ZrO2 | SSZ-13 | 400 | 3.0 | 3000 | 2 | 29 | 42 | 2 | 77 | 18 | 3 | [ |
ZnCrO x | SSZ-13 | 380 | 1.0 | 6000 | 2 | 20 | 49 | 6 | 72 | 15 | 7.5 | [ |
ZnCrO x | MOR | 360 | 2.0 | 1600 | 1 | 26 | 48 | 1 | 91 | 4 | 5 | [ |
ZnAl2O4 | MOR | 370 | 3.0 | 1500 | 1 | 10 | 44 | 5 | 77 | 12 | 6 | [ |
ZnCrO x | AlPO-18 | 390 | 10.0 | 3600 | 1 | 49 | 49 | 2 | 83 | 4 | 11 | [ |
ZnAlO x | SAPO-17 | 400 | 3.0 | 3000 | 2 | 23 | 42 | 13 | 66 | 14 | 7 | [ |
ZnAlO x | SAPO-18 | 400 | 3.0 | 3000 | 2 | 21 | 44 | 3 | 71 | 16 | 10 | [ |
ZnAlO x | SAPO-34 | 400 | 3.0 | 3000 | 2 | 24 | 44 | 4 | 81 | 14 | 1 | [ |
ZnCrO x | SAPO-18/34 | 390 | 4.0 | 6000 | 1 | 27 | 45-48 | 1 | 88 | 2 | 8 | [ |
K-MoS2 | SAPO-34 | 400 | 4.0 | 4000 | 1 | 20 | 50 | 15 | 59 | 22 | 4 | [ |
K-CoMoS | SAPO-34 | 400 | 4.0 | 4000 | 1 | 9 | 45 | 6 | 65 | 26 | 3 | [ |
1 | 王建明. 催化裂解生产低碳烯烃技术和工业应用的进展[J]. 化工进展, 2011, 30(5): 911-917. |
WANG Jianming. Development of catalytic cracking to produce low carbon olefins and its commercialization[J]. Chemical Industry and Engineering Progress, 2011, 30(5): 911-917. | |
2 | 吴宇凡, 王丽霞, 田辉平, 等. 新型分子筛上石脑油催化裂解多产低碳烯烃研究[J]. 石油炼制与化工, 2019, 50(10): 31-37. |
WU Yufan, WANG Lixia, TIAN huiping, et al. Catalytic cracking of naphtha over novel zeolites for maximizing light olefins yield[J]. Petroleum Processing and Petrochemicals, 2019, 50(10): 31-37. | |
3 | CHANG Clarence D, SILVESTRI Anthony J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259. |
4 | Michael STÖCKER. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous and Mesoporous Materials, 1999, 29(1/2): 3-48. |
5 | TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
6 | OLSBYE Unni, SVELLE Stian, BJORGEN Morten, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angewandte Chemie International Edition, 2012, 51(24): 5810-5831. |
7 | QINGLING Chen, WEIMIN Yang, JIAWEI Teng. Recent advances in coal to chemicals technologydeveloped by SINOPEC[J]. Chinese Journal of Catalysis, 2013, 34(1): 217-224. |
8 | 杨学萍, 董丽. 合成气直接制低碳烯烃技术进展与经济性分析[J]. 化工进展, 2012, 31(8): 1726-1731. |
YANG Xueping, DONG Li. Technical progress and economical ananysis on the direct production of light olefins from syngas[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1726-1731. | |
9 | 程金燮, 胡志彪, 王科, 等. 我国合成气一步法制低碳烯烃催化剂研究新进展[J]. 化工进展, 2016, 35(8): 2439-2445. |
CHENG Jinxie, HU Zhibiao, WANG Ke, et al. New advances in the catalysts for one-step light olefins production from syngas in China[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2439-2445. | |
10 | 马光远, 徐艳飞, 王捷, 等. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(3): 992-1000. |
MA Guangyuan, XU Yanfei, WANG Jie, et al. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 992-1000. | |
11 | DE SMIT Emiel, WECKHUYSEN Bert M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781. |
12 | KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical Reviews, 2007, 107(5): 1692-1744. |
13 | TORRES GALVIS Hirsa M, BITTER Johannes H, KHARE Chaitanya B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. |
14 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
15 | YANG Jung-Il, YANG Jung Hoon, KIM Hak-Joo, et al. Highly effective cobalt catalyst for wax production in Fischer-Tropsch synthesis[J]. Fuel, 2010, 89(1): 237-243. |
16 | ZHONG Liangshu, YU Fei, AN Yunlei, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
17 | ZHAO Ziang, LU Wei, YANG Ruoou, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catalysis, 2017, 8(1): 228-241. |
18 | ZHOU Wei, CHENG Kang, KANG Jincan, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Catalysis Science and Technology, 2019, 48(12): 3193-3228. |
19 | PAN Xiulian, JIAO Feng, MIAO Dengyun, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609. |
20 | 李娟, 吴梁鹏, 邱勇, 等. 费托合成催化剂的研究进展 [J]. 化工进展, 2013, 32(S1): 100-109. |
LI Juan, WU Liangpeng, QIU Yong, et al. Research advances in catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 100-109. | |
21 | CIOBÎCĂ I M, KRAMER G J, GE Q, et al. Mechanisms for chain growth in Fischer-Tropsch synthesis over Ru(0001)[J]. Journal of Catalysis, 2002, 212(2): 136-144. |
22 | GUAL Aitor, GODARD Cyril, Sergio CASTILLÓN, et al. Colloidal Ru, Co and Fe-nanoparticles: synthesis and application as nanocatalysts in the Fischer-Tropsch process[J]. Catalysis Today, 2012, 183(1): 154-171. |
23 | ZHANG Qinghong, DENG Weiping, WANG Ye. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. Journal of Energy Chemistry, 2013, 22(1): 27-38. |
24 | RYTTER Erling, HOLMEN Anders. Deactivation and regeneration of commercial type Fischer-Tropsch Co-catalysts: a mini-review[J]. Catalysts, 2015, 5(2): 478-499. |
25 | WANG Di, CHEN Bingxu, DUAN Xuezhi, et al. Iron-based Fischer-Tropsch synthesis of lower olefins: the nature of χ-Fe5C2 catalyst and why and how to introduce promoters[J]. Journal of Energy Chemistry, 2016, 25(6): 911-916. |
26 | LI Zhengjia, ZHONG Liangshu, YU Fei, et al. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions[J]. ACS Catalysis, 2017, 7(5): 3622-3631. |
27 | CHEN Wen, LIN Tiejun, DAI Yuanyuan, et al. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts[J]. Catalysis Today, 2018, 311: 8-22. |
28 | LIN Tiejun, LIU Peigong, GONG Kun, et al. Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission[J]. Applied Catalysis B: Environmental, 2021, 299. |
29 | LIN Tiejun, GONG Kun, WANG Caiqi, et al. Fischer-Tropsch synthesis to olefins: catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment[J]. ACS Catalysis, 2019, 9(10): 9554-9567. |
30 | FRIEDEL R A, ANDERSON R B. Composition of synthetic liquid fuels. I. Product distribution and analysis of C5~C8 paraffin isomers from cobalt catalyst[J]. Journal of the American Chemical Society, 2002, 72(3): 1212-1215. |
31 | CHENG Jun, HU P, ELLIS Peter, et al. Chain growth mechanism in Fischer-Tropsch synthesis: a DFT study of C—C coupling over Ru, Fe, Rh, and Re surfaces[J]. The Journal of Physical Chemistry C, 2008, 112(15): 6082-6086. |
32 | 崔登科, 陈崧哲, 陈靖, 等. 钌基费托催化剂研究进展[J]. 化工进展, 2017, 36(S1): 228-234. |
CUI Dengke, CHEN Songzhe, CHEN Jing, et al. Research progress in ruthenium-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 228-234. | |
33 | LI Tingzhen, WANG Hulin, YANG Yong, et al. Study on an iron–nickel bimetallic Fischer-Tropsch synthesis catalyst[J]. Fuel Processing Technology, 2014, 118: 117-124. |
34 | 刘润雪, 刘任杰, 徐艳, 等. 铁基费托合成催化剂研究进展[J]. 化工进展, 2016, 35(10): 3169-3179. |
LIU Runxue, LIU Renjie, XU Yan, et al. Recent advances in the development of iron-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3169-3179. | |
35 | XU Yanfei, LI Xiangyang, GAO Junhu, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613. |
36 | XIONG Jianmin, DING Yunjie, WANG Tao, et al. The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction[J]. Catalysis Letters, 2005, 102(3): 265-269. |
37 | FEI TAN Kong, XU Jing, CHANG Jie, et al. Carbon deposition on Co catalysts during Fischer-Tropsch synthesis: a computational and experimental study[J]. Journal of Catalysis, 2010, 274(2): 121-129. |
38 | CLAEYS M, DRY M E, VAN STEEN E, et al. In situ magnetometer study on the formation and stability of cobalt carbide in Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2014, 318: 193-202. |
39 | LI Zhengjia, LIN Tiejun, YU Fei, et al. Mechanism of the Mn promoter via CoMn spinel for morphology control: formation of Co2C nanoprisms for Fischer-Tropsch to olefins reaction[J]. ACS Catalysis, 2017, 7(12): 8023-8032. |
40 | AN Yunlei, ZHAO Yonghui, YU Fei, et al. Morphology control of Co2C nanostructures via the reduction process for direct production of lower olefins from syngas[J]. Journal of Catalysis, 2018, 366: 289-299. |
41 | DAI Yuanyuan, ZHAO Yonghui, LIN Tiejun, et al. Particle size effects of cobalt carbide for Fischer-Tropsch to olefins[J]. ACS Catalysis, 2018, 9(2): 798-809. |
42 | ZAFFRAN Jeremie, YANG Bo. Theoretical insights into the formation mechanism of methane, ethylene and methanol in Fischer-Tropsch synthesis at Co2C surfaces[J]. ChemCatChem, 2021, 13(11): 2674-2682. |
43 | GU Bang, ORDOMSKY Vitaly V, BAHRI Mounib, et al. Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts[J]. Applied Catalysis B: Environmental, 2018, 234: 153-166. |
44 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
45 | CHENG Kang, GU Bang, LIU Xiaoliang, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
46 | KIRILIN Alexey V, DEWILDE Joseph F, SANTOS Vera, et al. Conversion of synthesis gas to light olefins: impact of hydrogenation activity of methanol synthesis catalyst on the hybrid process selectivity over Cr–Zn and Cu–Zn with SAPO-34[J]. Industrial and Engineering Chemistry Research, 2017, 56(45): 13392-13401. |
47 | ZHU Yifeng, PAN Xiulian, JIAO Feng, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catalysis, 2017, 7(4): 2800-2804. |
48 | LI Na, JIAO Feng, PAN Xiulian, et al. Size Effects of ZnO nanoparticles in bifunctional catalysts for selective syngas sonversion[J]. ACS Catalysis, 2018, 9(2): 960-966. |
49 | JIAO Feng, PAN Xiulian, GONG Ke, et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angewandte Chemie International Edition, 2018, 57(17): 4692-4696. |
50 | LIU Xiaoliang, ZHOU Wei, YANG Yudan, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718. |
51 | RAVEENDRA G, LI Congming, CHENG Yang, et al. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New Journal of Chemistry, 2018, 42(6): 4419-4431. |
52 | RAVEENDRA G, LI Congming, LIU Bin, et al. Synthesis of lower olefins from syngas over Zn/Al2O3–SAPO-34 hybrid catalysts: role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catalysis Science and Technology, 2018, 8(14): 3527-3538. |
53 | ZHOU Haibo, LIU Su, SU Junjie, et al. Light olefin synthesis from syngas over sulfide-zeolite composite catalyst[J]. Industrial and Engineering Chemistry Research, 2018, 57(20): 6815-6820. |
54 | ZHOU Wei, KANG Jincan, CHENG Kang, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angewandte Chemie International Edition, 2018, 57(37): 12012-12016. |
55 | MA Sicong, HUANG Sida, LIU Zhipan. Dynamic coordination of cations and catalytic selectivity on zinc-chromium oxide alloys during syngas conversion[J]. Nature Catalysis, 2019, 2(8): 671-677. |
56 | SU Junjie, WANG Dong, WANG Yangdong, et al. Direct conversion of syngas into light olefins over zirconium-doped indium(Ⅲ) oxide and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction Network[J]. ChemCatChem, 2018, 10(7): 1536-1541. |
57 | NI Youming, LIU Yong, CHEN Zhiyang, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2018, 9(2): 1026-1032. |
58 | ZHANG Peng, MENG Fanhui, LI Xiaojing, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catalysis Science and Technology, 2019, 9(20): 5577-5581. |
59 | SU Junjie, ZHOU Haibo, LIU Su, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10(1): 1297. |
60 | DANG Shanshan, LI Shenggang, YANG Chengguang, et al. Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrO x /SAPO-34 bifunctional catalysts[J]. ChemSusChem, 2019, 12(15): 3582-3591. |
61 | JIAO Wenqian, SU Junjie, ZHOU Haibo, et al. Dual template synthesis of SAPO-18/34 zeolite intergrowths and their performances in direct conversion of syngas to olefins[J]. Microporous and Mesoporous Materials, 2020, 306: 110444. |
62 | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
63 | TAN Li, WANG Fan, ZHANG Peipei, et al. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins[J]. Chemical Science, 2020, 11(16): 4097-4105. |
64 | WANG Sen, WANG Pengfei, SHI Dezhi, et al. Direct conversion of syngas into light olefins with low CO2 emission[J]. ACS Catalysis, 2020, 10(3): 2046-2059. |
65 | FU Xiaoyan, LI Jiayi, LONG Jun, et al. Understanding the product selectivity of syngas conversion on ZnO surfaces with complex reaction network and structural evolution[J]. ACS Catalysis, 2021, 11(19): 12264-12273. |
66 | DING Yi, JIAO Feng, PAN Xiulian, et al. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins[J]. ACS Catalysis, 2021, 11(15): 9729-9737. |
67 | HUANG Yuxuan, MA Hongfang, XU Zhiqiang, et al. Direct conversion of syngas to light olefins over a ZnCrO x +H-SSZ-13 bifunctional catalyst[J]. ACS Omega, 2021, 6(16): 10953-10962. |
68 | ZHANG Peng, MENG Fanhui, YANG Langlang, et al. Syngas to olefins over a CrMnGa/SAPO-34 bifunctional catalyst: effect of Cr and Cr/Mn ratio[J]. Industrial and Engineering Chemistry Research, 2021, 60(36): 13214-13222. |
69 | ZHANG Zhengli, HUANG Yuxuan, MA Hongfang, et al. Syngas-to-olefins over MOF-derived ZnZrO x and SAPO-34 bifunctional catalysts[J]. Catalysis Communications, 2021, 152. |
70 | REN Li, ZHANG Jingyan, WANG Bowen, et al. Syngas to light olefins over ZnAlO x and high-silica CHA prepared by boron-assisted hydrothermal synthesis[J]. Fuel, 2022, 307. |
71 | HUANG Yuxuan, MA Hongfang, XU Zhiqiang, et al. Utilization of SAPO-18 or SAPO-35 in the bifunctional catalyst for the direct conversion of syngas to light olefins[J]. RSC Advances, 2021, 11(23): 13876-13884. |
72 | LIU Zhaopeng, NI Youming, FANG Xudong, et al. Highly converting syngas to lower olefins over a dual-bed catalyst[J]. Journal of Energy Chemistry, 2021, 58: 573-576. |
73 | LUO Yaoya, WANG Sen, GUO Shujia, et al. Conversion of syngas into light olefins over bifunctional ZnCeZrO/SAPO-34 catalysts: regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance[J]. Catalysis Science and Technology, 2021, 11(1): 338-348. |
74 | MENG Fanhui, LI Xiaojing, ZHANG Peng, et al. A facile approach for fabricating highly active ZrCeZnO in combination with SAPO-34 for the conversion of syngas into light olefins[J]. Applied Surface Science, 2021, 542. |
75 | RAVEENDRA G., MA Baorun, LIU Xiaohui, et al. Syngas to light olefin synthesis over La doped Zn x Al y O z composite and SAPO-34 hybrid catalysts[J]. Catalysis Science and Technology, 2021, 11(9): 3231-3240. |
76 | YANG Guinan, MENG Fanhui, ZHANG Peng, et al. Effects of preparation method and precipitant on Mn-Ga oxide in combination with SAPO-34 for syngas conversion into light olefins[J]. New Journal of Chemistry, 2021, 45(18): 7967-7976. |
77 | WANG Mengheng, KANG Jincan, XIONG Xuewei, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catalysis Today, 2021, 371: 85-92. |
78 | WANG Yuhao, WANG Genyuan, LARS I van der Wal,et al. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis[J]. Angewandte Chemie International Edition, 2021, 60(32): 17735-17743. |
79 | YARULINA Irina, CHOWDHURY Abhishek Dutta, MEIRER Florian, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1(6): 398-411. |
80 | YANG Miao, FAN Dong, WEI Yingxu, et al. Recent progress in methanol-to-olefins (MTO) catalysts[J]. Advanced Materials, 2019, 31(50): e1902181. |
81 | LI Gen, JIAO Feng, MIAO Dengyun, et al. Selective conversion of syngas to propane over ZnCrO x -SSZ-39 OX-ZEO catalysts[J]. Journal of Energy Chemistry, 2019, 36: 141-147. |
82 | WANG Chuanming, WANG Yangdong, XIE Zaiku. Methylation of olefins with ketene in zeotypes and its implications for the direct conversion of syngas to light olefins: a periodic DFT study[J]. Catalysis Science and Technology, 2016, 6(17): 6644-6649. |
83 | LAI Zhuangzhuang, SUN Ningling, JIN Jiamin, et al. Resolving the intricate mechanism and selectivity of syngas conversion on reduced ZnCr2O x : a quantitative study from DFT and microkinetic simulations[J]. ACS Catalysis, 2021, 11(21): 12977-12988. |
84 | RASMUSSEN Dominik B, CHRISTENSEN Jakob M, TEMEL Burcin, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angewandte Chemie International Edition, 2015, 54(25): 7261-7264. |
85 | YE Aiai, LI Zhaorui, DING Jieqiong, et al. Synergistic catalysis of Al and Zn sites of spinel ZnAl2O4 catalyst for CO hydrogenation to methanol and dimethyl ether[J]. ACS Catalysis, 2021, 11(15): 10014-10019. |
86 | 马思聪, 刘智攀. 神经网络全局势函数在多相催化中的应用 [J]. 化工进展, 2020, 39(9): 3433-3443. |
MA Sicong, LIU Zhipan. Global neural network potential applications in heterogeneous catalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3433-3443. | |
87 | CHEN Siyue, MA Sicong, LIU Zhipan. Zirconia-supported ZnO single layer for syngas conversion revealed from machine-learning atomic simulation[J]. Journal of Physical Chemistry Letters, 2021, 12(13): 3328-3334. |
88 | HU Wende, WANG Chuanming, WANG Yangdong, et al. First-principles-based microkinetic simulations of syngas to methanol conversion on ZnAl2O4 spinel oxide[J]. Applied Surface Science, 2021, 569: 151064. |
89 | F Le PELTIER, CHAUMETTE P, SAUSSEY J, et al. In-situ FTIR spectroscopy and kinetic study of methanol synthesis from CO/H2 over ZnAl2O4 and Cu-ZnAl2O4 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1997, 122(2/3): 131-139. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[3] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[4] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[5] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
[6] | 刘美佳, 王刚, 张忠东, 何盛宝, 高金森. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199. |
[7] | 张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214. |
[8] | 邓少碧, 边洲峰. 核壳结构在甲烷干重整中的应用[J]. 化工进展, 2023, 42(1): 247-254. |
[9] | 李婉麒, 杨凤娟, 贾德臣, 姜卫红, 顾阳. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
[10] | 石轩, 杨东元, 胡浩斌, 王焦飞, 张壮壮, 贺建勋, 代成义, 马晓迅. 苯与合成气在ZnAlCrO x &HZSM-5双功能催化剂上一步法制甲苯/二甲苯[J]. 化工进展, 2022, 41(S1): 247-259. |
[11] | 曹正凯, 米晓斌, 吴子明, 孙士可, 曹均丰, 彭德强, 梁相程. 煤合成气净化除尘装置压降问题分析及应用优化[J]. 化工进展, 2022, 41(S1): 15-21. |
[12] | 张广宇, 赵健, 孙峰, 姜杰, 孙冰, 徐伟. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189. |
[13] | 张琪, 王涛, 张雪冰, 孟祥堃, 吕毅军, 门卓武. 还原条件对高温费托合成熔铁催化剂性能的影响[J]. 化工进展, 2022, 41(S1): 239-246. |
[14] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[15] | 常耀萍, 官修帅, 郑谦, 靳山彪, 张长明, 张小超. 水热法制备3D花球状Bi2SiO5及其光催化油酸酯化反应[J]. 化工进展, 2022, 41(8): 4181-4191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |