化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4799-4807.DOI: 10.16085/j.issn.1000-6613.2022-1911
雷伟1(), 姜维佳2,3(), 王玉高1(), 和明豪1, 申峻1
收稿日期:
2022-10-14
修回日期:
2022-12-04
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
姜维佳,王玉高
作者简介:
雷伟(1996—),男,硕士研究生,研究方向为碳量子点制备及应用。E-mail:2799108581@qq.com。
基金资助:
LEI Wei1(), JIANG Weijia2,3(), WANG Yugao1(), HE Minghao1, SHEN Jun1
Received:
2022-10-14
Revised:
2022-12-04
Online:
2023-09-15
Published:
2023-09-28
Contact:
JIANG Weijia, WANG Yugao
摘要:
异质元素掺杂可以有效改善碳量子点的荧光性能,被广泛应用于碳量子点的改性。选取昭通褐煤为碳源,氯化钠溶液为电解液,硫脲为助剂,采用电化学氧化法完成N、S共掺杂碳量子点(N,S-CQD)的制备,荧光量子产率为1.60%。采用多种表征方法研究了N,S-CQD的结构、组成和光学特性。首先在结构组成方面,N,S-CQD是一类球形颗粒,尺寸分布均匀,平均粒径为1.66nm,其中主要存在C、O元素,还存在部分N和S元素;其次在光学性质方面,N,S-CQD在紫外光区吸收明显,荧光分析显示其最佳激发波长为280nm,最佳发射波长为313nm。最后基于Fe3+对N,S-CQD的荧光猝灭效应,将N,S-CQD应用于痕量Fe3+的检测,N,S-CQD对15~150μmol/L浓度范围内Fe3+的检测表现出较高的选择性和灵敏度,通过计算得出最低检出限L=1.22μmol/L,表明N,S-CQD可应用于痕量Fe3+的检测。
中图分类号:
雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807.
LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807.
工业分析 /% | 元素分析daf/% | C/H② | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | C | H | N | S | O① | ||
7.46 | 14.55 | 55.04 | 66.88 | 5.12 | 1.57 | 0.83 | 25.60 | 1.09 |
表1 ZT的工业分析与元素分析(质量分数)
工业分析 /% | 元素分析daf/% | C/H② | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | C | H | N | S | O① | ||
7.46 | 14.55 | 55.04 | 66.88 | 5.12 | 1.57 | 0.83 | 25.60 | 1.09 |
C | O | N | Cl | S |
---|---|---|---|---|
55.69 | 29.18 | 6.29 | 3.44 | 5.40 |
表2 N,S-CQD表面各元素相对含量 (%)
C | O | N | Cl | S |
---|---|---|---|---|
55.69 | 29.18 | 6.29 | 3.44 | 5.40 |
元素峰 | 峰号 | 结合能/eV | 归属 | 峰面积占比/% |
---|---|---|---|---|
C1s | 1 | 284.60 | C | 39.62 |
2 | 285.13 | C—N/C—S | 33.25 | |
3 | 286.29 | C—O | 16.38 | |
4 | 288.30 | C | 10.75 | |
O1s | 1 | 531.20 | C | 21.86 |
2 | 531.80 | C—O | 42.58 | |
3 | 532.54 | —OH | 35.56 | |
N1s | 1 | 398.92 | 吡啶氮 | 25.52 |
2 | 399.52 | 氨基氮 | 37.15 | |
3 | 400.12 | 吡咯氮 | 37.33 | |
S2p | 1 | 162.44 | C—S的2p3/2 | 12.15 |
2 | 163.60 | C—S的2p1/2 | 8.15 | |
3 | 168.70 | C—SO | 55.20 | |
4 | 169.80 | C—SO | 24.50 |
表3 N,S-CQD的C、O、N和S的吸收峰及其归属
元素峰 | 峰号 | 结合能/eV | 归属 | 峰面积占比/% |
---|---|---|---|---|
C1s | 1 | 284.60 | C | 39.62 |
2 | 285.13 | C—N/C—S | 33.25 | |
3 | 286.29 | C—O | 16.38 | |
4 | 288.30 | C | 10.75 | |
O1s | 1 | 531.20 | C | 21.86 |
2 | 531.80 | C—O | 42.58 | |
3 | 532.54 | —OH | 35.56 | |
N1s | 1 | 398.92 | 吡啶氮 | 25.52 |
2 | 399.52 | 氨基氮 | 37.15 | |
3 | 400.12 | 吡咯氮 | 37.33 | |
S2p | 1 | 162.44 | C—S的2p3/2 | 12.15 |
2 | 163.60 | C—S的2p1/2 | 8.15 | |
3 | 168.70 | C—SO | 55.20 | |
4 | 169.80 | C—SO | 24.50 |
1 | LI Peili, LIU Shuai, CAO Weiwei, et al. Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms[J]. Chemical Communications, 2020, 56(15): 2316-2319. |
2 | 胡晶静, 童裳伦. 光谱法研究碳量子点与人血清白蛋白的相互作用[J]. 光谱学与光谱分析, 2021, 41(4): 1107-1113. |
HU Jingjing, TONG Changlun. Study on the interaction between carbon quantum dots and human serum albumin by spectroscopic methods[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1107-1113. | |
3 | SENGOTTUVELU Dineshkumar, SHAIK Abdul Kalam, MISHRA Satish, et al. Multicolor nitrogen-doped carbon quantum dots for environment-dependent emission tuning[J]. ACS Omega, 2022, 7(31): 27742-27754. |
4 | SABET Mohammad, MAHDAVI Kamran. Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions[J]. Applied Surface Science, 2019, 463: 283-291. |
5 | 刘艳红, 张东旭, 毛宝东, 等. 从量子点的角度审视碳点的研究进展[J]. 化学学报, 2020, 78(12): 1349-1365. |
LIU Yanhong, ZHANG Dongxu, MAO Baodong, et al. Progress in carbon dots from the perspective of quantum dots [J]. Acta Chimica Sinica, 2020, 78(12): 1349-1365. | |
6 | TANG Jing, KONG Biao, WU Hao, et al. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging[J]. Advanced Materials, 2013, 25(45): 6569-6574. |
7 | HAN Rui, ZHOU Anning, ZHANG Ningning, et al. A review of kinetic studies on evaporative dehydration of lignite[J]. Fuel, 2022, 329: 125445. |
8 | 柳沛钰, 谭炯, 杨诗雨, 等. 荧光碳量子点用于有机酸的可视化检测[J]. 光谱学与光谱分析, 2020, 40(S1): 189-190. |
LIU Peiyu, TAN Jiong, YANG Shiyu, et al. Visual detection of organic acids by fluorescence carbon quantum dots[J]. Spectroscopy and Spectral Analysis, 2020, 40(S1): 189-190. | |
9 | MA Chongbo, ZHU Zhentong, WANG Hangxing, et al. A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications[J]. Nanoscale, 2015, 7(22): 10162-10169. |
10 | WANG Zifei, YUAN Fanglong, LI Xiaohong, et al. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes[J]. Advanced Materials, 2017, 29(37): 1702910. |
11 | YE Ruquan, XIANG Changsheng, LIN Jian, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications, 2013, 4(1): 2943. |
12 | DING Changqin, ZHU Anwei, TIAN Yang. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research, 2014, 47(1): 20-30. |
13 | DONG Yongqiang, PANG Hongchang, YANG Hong Bin, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angewandte Chemie International Edition, 2013, 52(30): 7800-7804. |
14 | LAN Danquan, RONG Yiyuan, HOU Yanping, et al. N,S co-doped carbon quantum dots anchoring on copper-vacancy-rich Cu nanowires/Cu foam as the cathode in microbial fuel cells: Role of C-S-Cu active site[J]. Science of the Total Environment, 2022, 805: 150340. |
15 | LI Jiani, LIU Tingting, DAHLGREN Randy A, et al. N, S- co-doped carbon/Co1 -x S nanocomposite with dual-enzyme activities for a smartphone-based colorimetric assay of total cholesterol in human serum[J]. Analytica Chimica Acta, 2022, 1204: 339703. |
16 | CHEN Shengyu, LI Suping, LIU Xiaofeng, et al. Nitrogen and sulfur co-doped carbon dot-based ratiometric fluorescent probe for Zn2+ sensing and imaging in living cells[J]. Microchimica Acta, 2022, 189(3): 107. |
17 | 黄加玲, 刘凤娇, 王婷婷, 等. 氮硫共掺杂碳量子点对胃液pH值的精确检测[J]. 高等学校化学学报, 2020, 41(7): 1513-1520. |
HUANG Jialing, LIU Fengjiao, WANG Tingting, et al. Nitrogen and sulfur co-doped carbon quantum dots for accurate detection of pH in gastric juice[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1513-1520. | |
18 | LIU Xu, ZHANG Guangying, WANG Lei, et al. Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery[J]. Small, 2021, 17(48): 2006766. |
19 | CHENG Tzu-Yang, CHOU Fengpai, HUANG Sheng-Cih, et al. Electroluminescence and photocatalytic hydrogen evolution of S, N co-doped graphene oxide quantum dots[J]. Journal of Materials Chemistry A, 2022, 10(7): 3650-3658. |
20 | Xingwang QIE, ZAN Minghui, MIAO Peng, et al. One-step synthesis of nitrogen, sulfur co-doped carbon nanodots and application for Fe3+ detection[J]. Journal of Materials Chemistry B, 2018, 6(21): 3549-3554. |
21 | HU Chao, YU Chang, LI Mingyu, et al. Nitrogen-doped carbon dots decorated on graphene: A novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction[J]. Chemical Communications, 2015, 51(16): 3419-3422. |
22 | HENTZE Matthias W, MUCKENTHALER Martina U, GALY Bruno, et al. Two to tango: Regulation of mammalian iron metabolism[J]. Cell, 2010, 142(1): 24-38. |
23 | ZHOU Hao, Meigui OU, SUN Donghao, et al. Facile preparation of highly fluorescent nitrogen-doped graphene quantum dots for sensitive Fe3+ detection[J]. Optics & Laser Technology, 2022, 156: 108542. |
24 | GU Lin, ZHANG Jingru, YANG Guangxin, et al. Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe3+ and L-ascorbic acid[J]. Food Chemistry, 2022, 376: 131898. |
25 | CHANDRA Soumen, MAHTO Triveni Kumar, CHOWDHURI Angshuman Ray, et al. One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (Ⅲ)[J]. Sensors and Actuators B: Chemical, 2017, 245: 835-844. |
26 | LI Bo, ZHANG Jing, LUO Ziyu, et al. Amorphous B-doped graphitic carbon nitride quantum dots with high photoluminescence quantum yield of near 90% and their sensitive detection of Fe2+/Cd2+ [J]. Science China, 2021,64(12): 3037-3050. |
27 | WU Yuqing, CAO Lei, ZAN Minghui, et al. Iron and nitrogen-co-doped carbon quantum dots for the sensitive and selective detection of hematin and ferric ions and cell imaging[J]. Analyst, 2021, 146(15): 4954-4963. |
28 | NAGARAJ Murugan, RAMALINGAM Srinivasan, MURUGAN Chandran, et al. Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer [J]. Environmental Research, 2022, 212: 113273. |
29 | FENG Mi, WANG Yumeng, HE Bin, et al. Chitin-based carbon dots with tunable photoluminescence for Fe3+ detection[J]. ACS Applied Nano Materials, 2022, 5(5): 7502-7511. |
30 | PENG Juan, GAO Wei, GUPTA Bipin Kumar, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012, 12(2): 844-849. |
31 | DONG Yongqiang, CHEN Congqiang, ZHENG Xinting, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphenequantum dots from CX-72 carbon black[J]. Journal of Materials Chemistry, 2012, 22(18): 8764-8766. |
32 | 邓立华, 白孟龙, 孙绍增, 等. 水蒸气对脱灰煤焦O2/H2O燃烧特性的影响[J]. 煤炭学报, 2022, 47(7): 2790-2796. |
DENG Lihua, BAI Menglong, SUN Shaozeng, et al. Effect of steam on O2/H2O combustion characteristics of demineralized coal char[J]. Journal of China Coal Society, 2022, 47(7): 2790-2796. | |
33 | XU Hongbo, ZHOU Shenghai, LIU Jinyu, et al. Nanospace-confined preparation of uniform nitrogen-doped graphene quantum dots for highly selective fluorescence dual-function determination of Fe3+ and ascorbic acid[J]. RSC Advances, 2018, 8(10): 5500-5508. |
34 | 黄铮钰, 黄泽明, 周立. 高荧光效率硫量子点的简单制备及其在对硝基苯酚检测中的应用[J]. 发光学报, 2022, 43(6): 952-960. |
HUANG Zhengyu, HUANG Zeming, ZHOU Li. Facile synthesis of highly fluorescent sulfur quantum dots for detection of 4-nitrophenol[J]. Chinese Journal of Luminescence, 2022, 43(6): 952-960. | |
35 | YANG Weimin, LIU Fu, JIN Yanting, et al. Efficient reduction of Cr(Ⅵ) with carbon quantum dots[J]. ACS Omega, 2022, 7(27): 23555-23565. |
36 | DING Hui, WEI Jishi, XIONG Huanming. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence[J]. Nanoscale, 2014, 6(22): 13817-13823. |
37 | 吕斌, 郭旭, 高党鸽, 等. 提高钙钛矿量子点稳定性的研究进展[J]. 化工进展, 2021, 40(1): 247-258. |
Bin LYU, GUO Xu, GAO Dangge, et al. Research progress on the improvement of the stability of perovskite quantum dots[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 247-258. | |
38 | YAN Fanyong, XU Ming, XU Jianping, et al. Facile synthesis of high-performance sulfur quantum dots via an effective ethylenediamine-assisted acceleration strategy for fluorescent sensing[J]. Sensors and Actuators B: Chemical, 2022, 370: 132393. |
39 | CUI Xiaobiao, WANG Yinglin, LIU Jie, et al. Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions[J]. Sensors and Actuators B: Chemical, 2017, 242: 1272-1280. |
40 | FAN Xiaohui, WANG Yang, LI Bo, et al. Highly luminescent pH-responsive carbon quantum dots for cell imaging[J]. Nanotechnology, 2022, 33(26): 265002. |
41 | BAO Ruiqi, CHEN Zhiyi, ZHAO Zhiwei, et al. Green and facile synthesis of nitrogen and phosphorus co-doped carbon quantum dots towards fluorescent ink and sensing applications[J]. Nanomaterials, 2018, 8(6): 386. |
42 | JU Jian, CHEN Wei. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe(Ⅲ) in aqueous media[J]. Biosensors and Bioelectronics, 2014, 58: 219-225. |
43 | 刘雪萍, 杨娟, 白燕. 碳量子点荧光猝灭法检测铁离子[J]. 分析化学, 2016, 44(5): 804-808. |
LIU Xueping, YANG Juan, BAI Yan. Determination of ferric ions based on fluorescence quenching of carbon dots[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 804-808. |
[1] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[2] | 范涛. 蒙东褐煤热解技术工业应用进展[J]. 化工进展, 2021, 40(3): 1362-1370. |
[3] | 郭晶,张光华,张万斌,朱军峰,吴江,杜伦. 烷基烯酮二聚体对褐煤疏水改性及成浆性能的影响[J]. 化工进展, 2019, 38(10): 4705-4711. |
[4] | 刘清浩, 何艳飞, 梁丽娜, 念继鹏, 胡志勇, 郭金春, 梁栋, 刘红彦. 基于氮掺杂碳量子点的荧光微球制备和Fe3+检测[J]. 化工进展, 2018, 37(10): 3936-3942. |
[5] | 胡仕宁, 张光华, 杜伦, 李俊国. 石蜡乳液表面包覆改性低阶煤及其对水煤浆性能的影响[J]. 化工进展, 2018, 37(04): 1421-1425. |
[6] | 杨明顺, 康善娇, 刘卫兵, 李春启, 段世慈, 解强. 基于固定床气化废水的褐煤水热提浓制浆[J]. 化工进展, 2018, 37(04): 1414-1420. |
[7] | 俞乔尼, 张越, 杨帆, 赵尚明, 肖雷, 姚菁华, 崔卓异. 褐煤氧化前后的特性分析[J]. 化工进展, 2017, 36(S1): 175-179. |
[8] | 王大鹏, 于晓晨, 齐丽薇, 于才渊, 王喜忠. 基于新型内热式移动-流化床干燥器的褐煤干燥过程[J]. 化工进展, 2017, 36(S1): 87-91. |
[9] | 胡林, 王光华, 何龙, 王晴东, 马志勇, 刘阳. 褐煤焦与NaNO3对昭通褐煤微波提质特性研究[J]. 化工进展, 2017, 36(12): 4423-4429. |
[10] | 岳永强, 刘永卓, 常国璋, 郭庆杰. 热解气氛与温度对褐煤半焦“一步法”甲烷化活性的影响[J]. 化工进展, 2017, 36(10): 3690-3696. |
[11] | 曾会会, 仪桂云, 邢宝林, 黄光许, 谌伦建, 张传祥, 徐冰, 姚友恒, 张青山, 李颉. 煤基石墨烯/TiO2复合材料的制备及光催化性能[J]. 化工进展, 2017, 36(07): 2568-2576. |
[12] | 侯康, 武建军, 尚晓玲, 张一昕. 热重法研究逐级脱矿对褐煤燃烧特性的影响[J]. 化工进展, 2017, 36(03): 900-908. |
[13] | 马有福, 杨丽娟. 褐煤锅炉冷端优化热力系统技术经济性比较[J]. 化工进展, 2016, 35(12): 4088-4095. |
[14] | 易霜, 何选明, 郑辉, 林红涛, 李翠华, 李冲. 甘蔗渣与褐煤共热解半焦的特性[J]. 化工进展, 2016, 35(10): 3149-3154. |
[15] | 张大洲, 卢文新, 陈风敬, 夏吴, 左静, 王志刚, 商宽祥. 褐煤干燥水分回收利用及其研究进展[J]. 化工进展, 2016, 35(02): 472-478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |