1 |
宋庆彬, 李金惠, 董庆银, 等. 我国废旧硒鼓墨盒回收与处理现状研究[J]. 环境工程, 2015, 33(7): 113-117.
|
|
SONG Qingbin, LI Jinhui, DONG Qingyin, et al. Studies on recycling and treatment status of waste toner and ink cartridges in china[J]. Environmental Engineering, 2015, 33(7): 113-117, 108.
|
2 |
茆吉庆, 黎阳, 蒋诗, 等. 废弃墨粉的回收及其电化学储能应用研究[J]. 环境工程, 2016, 34(S1): 715-718.
|
|
MAO Jiqing, LI Yang, JIANG Shi, et al. Recycling of waste toner and its application in electrochemical energy storage[J]. Environmental Engineering, 2016, 34(S1): 715-718.
|
3 |
章雨勤, 程知萱, 张源, 等. 利用废弃硒鼓墨粉制备γ-Fe2O3气敏材料[J]. 郑州大学学报(工学版), 2016, 37(4): 44-48.
|
|
ZHANG Yuqin, CHENG Zhixuan, ZHANG Yuan, et al. Use of waste toner cartridges for preparing γ-Fe2O3 sensitive material[J]. Journal of Zhengzhou University (Engineering Science), 2016, 37(4): 44-48.
|
4 |
KHEDAYWI T S. Study on utilising waste toner in asphalt cement[J]. Road Materials and Pavement Design, 2014, 15(2): 446-454.
|
5 |
李诗琦, 李闯民, 李元元. 回收碳粉改性沥青制备参数及性能研究[J]. 石油沥青, 2016, 30(6): 25-30.
|
|
LI Shiqi, LI Chuangmin, LI Yuanyuan. Preparation parameters and performance study of recycled carbon powder modified asphalt[J]. Petroleum Asphalt, 2016, 30(6): 25-30.
|
6 |
宗美林, 叶晓江, 常怀钟, 等. 水基碳纳米管纳米流体在室外自然条件下的光热性能研究[J]. 太阳能学报, 2020, 41(5): 48-53.
|
|
ZONG Meilin, YE Xiaojiang, CHANG Huaizhong, et al. Study on photo-thermal conversion characteristics of water-based carbon nanotubes in outdoor natural condition[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 48-53.
|
7 |
屈健, 张若梅, 田敏. 氧化铜-碳纳米管/水混合纳米流体的光热性能[J]. 化工进展, 2018, 37(6): 2125-2131.
|
|
QU Jian, ZHANG Ruomei, TIAN Min. Photo-thermal properties of hybrid CuO-MWCNT/H2O nanofluids[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2125-2131.
|
8 |
周玲, 尹淼, 陈钰琦, 等. 油基CuO和HgS纳米流体的光热转换特性研究[J]. 太阳能学报, 2017, 38(6): 1620-1625.
|
|
ZHOU Ling, YIN Miao, CHEN Yuqi, et al. Photothermal conversion properties of oil-based CuO and HgS nanofluids[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1620-1625.
|
9 |
HAZRA S K, GHOSH S, NANDI T K. Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors[J]. Applied Thermal Engineering, 2019, 163: 114402.
|
10 |
刘闪威. 槽式太阳能熔盐集热传热的试验研究[D]. 北京: 北京工业大学, 2013.
|
|
LIU Shanwei. Experimental study on heat transfer with molten salt in trough solar collector system[D]. Beijing: Beijing University of Technology, 2013.
|
11 |
SAIDUR R, MENG T C, SAID Z, et al. Evaluation of the effect of nanofluid-based absorbers on direct solar collector[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5899-5907.
|
12 |
凌智勇, 黄跃涛, 张忠强, 等. 表面活性剂对Cu-H2O和ZrO2-H2O纳米流体稳定性的影响[J]. 功能材料, 2015, 46(10):10100-10103.
|
|
LING Zhiyong, HUANG Yuetao, ZHANG Zhongqiang, et al. Effect of surfactants on the stability of Cu-H2O and ZrO2-H2O nanofluids[J]. Journal of Functional Materials, 2015, 46(10):10100-10103.
|
13 |
王良虎, 向军, 李菊香. 纳米流体的稳定性研究[J]. 材料导报, 2011, 25(S1): 17-20.
|
|
WANG Lianghu, XIANG Jun, LI Juxiang. Study on stability of nanofluid[J]. Materals Review, 2011, 25(S1): 17-20.
|
14 |
MEHRALI M, GHATKESAR M K, PECNIK R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids[J]. Applied Energy, 2018, 224: 103-115.
|
15 |
WANG Han, YANG Weimin, CHENG Lisheng, et al. Chinese ink: High performance nanofluids for solar energy[J]. Solar Energy Materials and Solar Cells, 2018, 176: 374-380.
|
16 |
ZEINY A, JIN H C, BAI L Z, et al. A comparative study of direct absorption nanofluids for solar thermal applications[J]. Solar Energy, 2018, 161: 74-82.
|
17 |
MENG Zhaoguo, HAN Dongxiao, WU Daxiong, et al. Thermal conductivities, rheological behaviors and photothermal properties of ethylene glycol-based nanofluids containing carbon black nanoparticles[J]. Procedia Engineering, 2012, 36: 521-527.
|
18 |
KHOSROJERDI S, LAVASANI A, VAKILI M. Experimental study of photothermal specifications and stability of graphene oxide nanoplatelets nanofluid as working fluid for low-temperature direct absorption solar collectors (DASCs)[J]. Solar Energy Materials and Solar Cells, 2017, 164: 32-39.
|
19 |
GUO Chenglong, LIU Can, JIAO Shaokai, et al. Introducing optical fiber as internal light source into direct absorption solar collector for enhancing photo-thermal conversion performance of MWCNT-H2O nanofluids[J]. Applied Thermal Engineering, 2020, 173: 115207.
|
20 |
LI Xiaoke, CHEN Wenjing, ZOU Changjun. An experimental study on β-cyclodextrin modified carbon nanotubes nanofluids for the direct absorption solar collector (DASC): Specific heat capacity and photo-thermal conversion performance[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110240.
|
21 |
JEONG M G, KIM J B, QIN C Y, et al. Synthesis of therminol-graphite nanofluids and photo-thermal conversion properties[J]. International Journal of Energy Research, 2021, 45(7): 11320-11328.
|
22 |
TANG Zhenglai, SONG Dongxing, MA Weigang, et al. Two-level synergistic scatterings from porosity and particle aggregation in Cu nanofluids for the enhancement of solar thermal conversion[J]. Journal of Molecular Liquids, 2021, 342: 116940.
|
23 |
KIMPTON H, ZHANG X L, STULZ E. The temperature stability and development of a broadband silver nanofluid for solar thermal applications[J]. Energy Reports, 2021, 7: 87-96.
|
24 |
CHEN Meijie, HE Yurong, HUANG Jian, et al. Investigation into Au nanofluids for solar photothermal conversion[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1894-1900.
|
25 |
TONG Y J, BOLDOO T, HAM J, et al. Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid[J]. Energy, 2020, 196:117086.
|
26 |
KARAMI M, AKHAVAN-BEHABADI M A, RAISEE DEHKORDI M, et al. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation[J]. Solar Energy Materials and Solar Cells, 2016, 144: 136-142.
|
27 |
ESMAEILI M, KARAMI M, DELFANI S. Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid[J]. International Journal of Energy Research, 2020, 44(7): 5527-5544.
|
28 |
HATAMI M, JING D W. Evaluation of wavy direct absorption solar collector (DASC) performance using different nanofluids[J]. Journal of Molecular Liquids, 2017, 229: 203-211.
|
29 |
CHEN Wenjing, ZOU Changjun, LI Xiaoke. An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2017, 163: 157-163.
|
30 |
MENG Zhaoguo, LI Yang, CHEN Nan, et al. Broad-band absorption and photo-thermal conversion properties of zirconium carbide aqueous nanofluids[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 286-292.
|
31 |
HAZRA S K, MICHAEL M, NANDI T K. Investigations on optical and photo-thermal conversion characteristics of BN-EG and BN/CB-EG hybrid nanofluids for applications in direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111245.
|
32 |
WANG Kongxiang, HE Yan, LIU Pengyu, et al. Highly-efficient nanofluid-based direct absorption solar collector enhanced by reverse-irradiation for medium temperature applications[J]. Renewable Energy, 2020, 159: 652-662.
|
33 |
王威, 王宝群, 刘京玲, 等. 墨粉的制备及发展概况[J]. 中国材料进展, 2012, 31(1): 1-7.
|
|
WANG Wei, WANG Baoqun, LIU Jingling, et al. Situation for toner production and development[J]. Materials China, 2012, 31(1): 1-7.
|
34 |
何钦波. 外加磁场强化磁性纳米流体的光热特性及机理研究[D]. 广州: 华南理工大学, 2015.
|
|
HE Qinbo. Experimental investigation on photothermal properties of magnetic nanofluids under magnetic field[D]. Guangzhou: South China University of Technology, 2015.
|
35 |
PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170.
|
36 |
李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485.
|
|
LI Fuheng. Investigation on photothermal conversion characteristics of graphene nanosheets-glycol nanofluids[J]. CIESC Journal, 2020, 71(S1): 479-485.
|