化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 117-125.DOI: 10.16085/j.issn.1000-6613.2021-1183
王英梅1,2,3,4(), 牛爱丽1,2,3, 张兆慧1,2,3, 展静4, 张学民1,2,3
收稿日期:
2021-06-03
修回日期:
2021-06-23
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
王英梅
作者简介:
王英梅(1987—),女,博士,副教授,硕士生导师,主要从事气体水合物生成与分解动力学方面的研究。E-mail: 基金资助:
WANG Yingmei1,2,3,4(), NIU Aili1,2,3, ZHANG Zhaohui1,2,3, ZHAN Jing4, ZHANG Xuemin1,2,3
Received:
2021-06-03
Revised:
2021-06-23
Online:
2021-11-12
Published:
2021-11-12
Contact:
WANG Yingmei
摘要:
气体水合物具有很多优点,却没有大规模的工业化利用,最主要的问题是生成二氧化碳水合物速率缓慢,阻碍了水合物法技术的应用,因此最大程度地提高其生成速率是气体水合物技术得以成功应用的关键。最常见快速生成二氧化碳水合物的方法是加入促进剂,而不同种类和浓度的促进剂对二氧化碳水合物生成速率的作用效果不同。故本文主要概述二氧化碳水合物快速生成的方法,从动力学促进剂、纳米流体以及离子促进剂进行分析, 分别总结了它们对水合物的生成机理。分析了十二烷基硫酸钠(SDS)、纳米石墨、氯化钠三者单独作用时及三者和不同促进剂复配时对二氧化碳水合物的诱导成核时间、生成速率、相平衡、表面张力等方面的影响。最后指出:单一的促进剂都存在最佳浓度,但其会随着不同温度、压力等多种因素的改变而改变,以及不同种类的促进剂复配时存在协同作用且生成效果比单一的好,揭示不同温度、不同压力时最适宜的单一促进剂对水合物生成影响的规律及找出最适宜提高水合物生成速率的促进剂是今后研究的重点方向。目前各种单一的及复配的促进剂对水合物的生成影响尚未形成完整的体系,需要进一步研究。
中图分类号:
王英梅, 牛爱丽, 张兆慧, 展静, 张学民. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125.
WANG Yingmei, NIU Aili, ZHANG Zhaohui, ZHAN Jing, ZHANG Xuemin. Review of rapid generation methods of carbon dioxide hydrate[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 117-125.
1 | KUMAR A, SAKPAL T, LINGA P, et al. Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics[J]. Fuel, 2013, 105: 664-671. |
2 | HERSLUND P J, THOMSEN K, ABILDSKOV J, et al. Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes[J]. Fluid Phase Equilibria, 2014, 375: 45-65. |
3 | 王林军, 邵磊, 张学民, 等. 促进二氧化碳水合物快速生成的方法与机理的研究进展[J]. 中国沼气, 2012, 30(3): 25-29, 33. |
WANG Linjun, SHAO Lei, ZHANG Xuemin, et al. Advances on methods promoting the rapid formation of carbon dioxide hydrate and mechanisms[J]. China Biogas, 2012, 30(3): 25-29, 33. | |
4 | 孙嘉颖, 谢应明, 徐政涛, 等. 纳米流体强化CO2水合物生成的研究进展[J]. 现代化工, 2019, 39(12): 26-30. |
SUN Jiaying, XIE Yingming, XU Zhengtao, et al. Research progress in nanofluids-enhanced formation of CO2 hydrate[J]. Modern Chemical Industry, 2019, 39(12): 26-30. | |
5 | LI A R, JIANG L L, TANG S Y. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor[J]. Energy, 2017, 134: 629-637. |
6 | LINGA P, KUMAR R, LEE J D, et al. A new apparatus to enhance the rate of gas hydrate formation: Application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 630-637. |
7 | LI G, LIU D P, XIE Y M, et al. Study on effect factors for CO2 hydrate rapid formation in a water-spraying apparatus[J]. Energy & Fuels, 2010, 24(8): 4590-4597. |
8 | FUJITA S, WATANABE K, MORI Y H. Clathrate-hydrate formation by water spraying onto a porous metal plate exuding a hydrophobic liquid coolant[J]. AIChE Journal, 2009, 55(4): 1056-1064. |
9 | MYRE D, MACCHI A. Heat transfer and bubble dynamics in a three-phase inverse fluidized bed[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 523-529. |
10 | SHU B F, MA X L, GUO K H, et al. Influences of different types of magnetic fields on HCFC-141b gas hydrate formation processes[J]. Science in China Series B: Chemistry, 2004, 47(5): 428-433. |
11 | BAI J, LI D, LIANG D. Thermal analysis on the process of CO2 hydrate formation in static higee reactor[J]. Natural Gas Chemical Industry, 2010, 35(4): 30-34. |
12 | LIANG D Q, HE S, LI D L. Effect of microwave on formation/decomposition of natural gas hydrate[J]. Chinese Science Bulletin, 2009, 54(6): 965-971. |
13 | YE N, ZHANG P, LIU Q S. Kinetics of hydrate formation in the CO2+TBAB+H2O system at low mass fractions[J]. Industrial & Engineering Chemistry Research, 2014, 53(24): 10249-10255. |
14 | BABU P, CHIN W I, KUMAR R, et al. Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4878-4887. |
15 | NGUYEN N N, NGUYEN A V, NGUYEN K T, et al. Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure[J]. Fuel, 2016, 185: 517-523. |
16 | RAJABI FIROOZABADI S, BONYADI M. A comparative study on the effects of Fe3O4 nanofluid, SDS and CTAB aqueous solutions on the CO2 hydrate formation[J]. Journal of Molecular Liquids, 2020, 300: 112251. |
17 | MOLOKITINA N S, NESTEROV A N, PODENKO L S, et al. Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel, 2019, 235: 1400-1411. |
18 | CHOI J W, CHUNG J T, KANG Y T. CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants[J]. Energy, 2014, 78: 869-876. |
19 | YU Y S, XU C G, LI X S. Evaluation of CO2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 64-69. |
20 | ZHOU S D, JIANG K, ZHAO Y L, et al. Experimental investigation of CO2 hydrate formation in the water containing graphite nanoparticles and tetra-n-butyl ammonium bromide[J]. Journal of Chemical & Engineering Data, 2018, 63(2): 389-394. |
21 | KAWASAKI T, OBARA S. CO2 hydrate heat cycle using a carbon fiber supported catalyst for gas hydrate formation processes[J]. Applied Energy, 2020, 269: 115125. |
22 | MOEINI H, BONYADI M, ESMAEILZADEH F, et al. Experimental study of sodium chloride aqueous solution effect on the kinetic parameters of carbon dioxide hydrate formation in the presence/absence of magnetic field[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 231-239. |
23 | FIROOZABADI S R, BONYADI M, LASHANIZADEGAN A. Experimental investigation of Fe3O4 nanoparticles effect on the carbon dioxide hydrate formation in the presence of magnetic field[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 374-386. |
24 | 周麟晨, 孙志高, 李娟, 等. 水合物形成促进剂研究进展[J]. 化工进展, 2019, 38(9): 4131-4141. |
ZHOU Linchen, SUN Zhigao, LI Juan, et al. Progress of hydrate formation promoters[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4131-4141. | |
25 | 张雪艳, 周诗岽, 姬浩洋, 等. 氧化石墨烯/纳米石墨颗粒与SDS复配对CO2水合物生成特性的影响[J]. 天然气化工(C1化学与化工), 2021, 46(2): 53-58. |
ZHANG Xueyan, ZHOU Shidong, JI Haoyang, et al. Effect of GO/GN and SDS compound system on formation characteristics of CO2 hydrate[J]. Natural Gas Chemical Industry, 2021, 46(2): 53-58. | |
26 | PHAN A, SCHLÖSSER H, STRIOLO A. Molecular mechanisms by which tetrahydrofuran affects CO2 hydrate Growth: Implications for carbon storage[J]. Chemical Engineering Journal, 2021, 418: 129423. |
27 | 白飞亚, 刘妮. 添加剂对CO2水合物生成影响机理的研究进展[J]. 制冷技术, 2017, 37(2): 20-24, 31. |
BAI Feiya, LIU Ni. Research progress on impact mechanisms of additives on CO2 hydrate formation[J]. Chinese Journal of Refrigeration Technology, 2017, 37(2): 20-24, 31. | |
28 | 胡亚飞, 蔡晶, 李小森. 盐水体系环戊烷-甲烷水合物生成过程温度特性[J]. 天然气化工(C1化学与化工), 2017, 42(1): 58-66. |
HU Yafei, CAI Jing, LI Xiaosen. Temperature properties in brine system in the formation process of cyclopentane-methane binary hydrates[J]. Natural Gas Chemical Industry, 2017, 42(1): 58-66. | |
29 | 孙贤, 刘德俊. 二氧化碳水合物动力学促进剂研究进展[J]. 化工进展, 2018, 37(2): 517-524. |
SUN Xian, LIU Dejun. Advances in carbon dioxide hydrate kinetic additives[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 517-524. | |
30 | ZHONG Y, ROGERS R E. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
31 | 张琳, 王树立, 周诗岽, 等. 表面活性剂用于促进气体水合物生成研究的进展[J]. 应用化学, 2014, 31(5): 505-512. |
ZHANG Lin, WANG Shuli, ZHOU Shidong, et al. Research progress in surfactant effects on promoting gas hydrate formation[J]. Chinese Journal of Applied Chemistry, 2014, 31(5): 505-512. | |
32 | 余汇军, 王树立, 江光世, 等. 表面活性剂对CO2水合物生成影响的实验研究[J]. 常州大学学报(自然科学版), 2011, 23(2): 55-59. |
YU Huijun, WANG Shuli, JIANG Guangshi, et al. Experimental study of the impact of compound additives on CO2 hydrate formation conditions[J]. Journal of Changzhou University (Natural Science Edition), 2011, 23(2): 55-59. | |
33 | 张强, 吴强, 张保勇, 等. NaCl-SDS复合溶液中多组分瓦斯水合物成核动力学机理[J]. 煤炭学报, 2015, 40(10): 2430-2436. |
ZHANG Qiang, WU Qiang, ZHANG Baoyong, et al. Nucleation kinetics mechanism of multi-component mine gas hydrate in NaCl-SDS mixed solutions[J]. Journal of China Coal Society, 2015, 40(10): 2430-2436. | |
34 | 吴强, 周竹青, 高霞, 等. NaCl溶液中多组分瓦斯水合物的成核诱导时间[J]. 煤炭学报, 2015, 40(6): 1396-1401. |
WU Qiang, ZHOU Zhuqing, GAO Xia, et al. Nucleation induction time of multi-component gas hydrate in NaCl solution [J]. Journal of China Coal Society, 2015, 40(6): 1396-1401. | |
35 | TAO D. Gas hydrate to capture and sequester CO2 [D]. Mississippi: University of Mississippi, 2004. |
36 | 王树立, 余汇军, 石青树, 等. 复合添加剂对二氧化碳水合物生成条件影响的实验研究及动力学模型建立[J]. 天然气化工(C1化学与化工), 2011, 36(1): 20-22, 33. |
WANG Shuli, YU Huijun, SHI Qingshu, et al. Experimental study of effects of compound additives on CO2 hydrate formation conditions and kinetic model establishment[J]. Natural Gas Chemical Industry, 2011, 36(1): 20-22, 33. | |
37 | 余汇军, 王树立, 宋琦. 添加剂对二氧化碳水合物生成特性的影响[J]. 化学工业与工程, 2010, 27(5): 411-414. |
YU Huijun, WANG Shuli, SONG Qi. Influence of additives on the generation characteristics of CO2 hydrate[J]. Chemical Industry and Engineering, 2010, 27(5): 411-414. | |
38 | 靳远, 米雪源, 马贵阳, 等. 多孔介质与SDS复配对甲烷水合物生成的影响[J]. 精细石油化工, 2020, 37(3): 47-51. |
JIN Yuan, MI Xueyuan, MA Guiyang, et al. Effect of complex system of porous media and sds on methane hydrate formation[J]. Speciality Petrochemicals, 2020, 37(3): 47-51. | |
39 | 臧小亚, 梁德青, 吴能友. 细砂沉积物中水合物生成过程研究[J]. 中国科学: 地球科学, 2013, 43(3): 360-367. |
ZANG Xiaoya, LIANG Deqing, WU Nengyou. Study on hydrate formation process in fine sand sediments [J]. Scientia Sinica (Terrae), 2013, 43(3): 360-367. | |
40 | CHATURVEDI E, LAIK S, MANDAL A. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation[J]. Chinese Journal of Chemical Engineering, 2021, 32: 1-16. |
41 | 马玉亮, 谢锐杰, 郑欢, 等. 甲烷在SDS+纳米SiO2+泡沫铝中存储量研究[J]. 西安石油大学学报(自然科学版), 2020, 35(5): 116-121. |
MA Yuliang, XIE Ruijie, ZHENG Huan, et al. Study on storage of CH4 in SDS+Nano SiO2+Foam aluminum[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2020, 35(5): 116-121. | |
42 | 周诗岽, 余益松, 甘作全, 等. 纳米石墨颗粒对气体水合物生成诱导时间的影响[J]. 天然气化工(C1化学与化工), 2015, 40(1): 60-64. |
ZHOU Shidong, YU Yisong, GAN Zuoquan, et al. Effect of graphite nanoparticles on induction time of gas hydrate formation[J]. Natural Gas Chemical Industry, 2015, 40(1): 60-64. | |
43 | 周诗岽, 张锦, 赵永利, 等. 纳米石墨颗粒与SDS复配对CO2水合物生成诱导时间的影响[J]. 科学技术与工程, 2016, 16(1): 58-62. |
ZHOU Shidong, ZHANG Jin, ZHAO Yongli, et al. Effect of graphite nanoparticles and SDS on induction time of gas hydrate formation[J]. Science Technology and Engineering, 2016, 16(1): 58-62. | |
44 | 周诗岽, 于雪薇, 李青岭, 等. 纳米石墨颗粒与SDS复配对水合物生成特性的影响[J]. 天然气化工(C1化学与化工), 2017, 42(2): 50-53, 118. |
ZHOU Shidong, YU Xuewei, LI Qingling, et al. Effect of graphite nanoparticles and SDS on hydrate formation characteristics[J]. Natural Gas Chemical Industry, 2017, 42(2): 50-53, 118. | |
45 | ZHANG F Y, WANG X L, LOU X, et al. The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications[J]. Energy, 2021, 227: 120424. |
46 | LU H L, MATSUMOTO R. Experimental studies on the possible influences of composition changes of pore water on the stability conditions of methane hydrate in marine sediments[J]. Marine Chemistry, 2005, 93(2/3/4): 149-157. |
47 | ATIK Z, WINDMEIER C, OELLRICH L R. Experimental gas hydrate dissociation pressures for pure methane in aqueous solutions of MgCl2 and CaCl2 and for a (methane + ethane) gas mixture in an aqueous solution of (NaCl + MgCl2)[J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1862-1867. |
48 | 王树立, 宋琦, 郑志, 等. 不同类型体系下复合型添加剂对水合物生成的影响[J]. 天然气化工(C1化学与化工), 2009, 34(6): 44-48. |
WANG Shuli, SONG Qi, ZHENG Zhi, et al. Effect of compound additives on natural gas hydrate formation in different systems[J]. Natural Gas Chemical Industry, 2009, 34(6): 44-48. | |
49 | YANG S H B, BABU P, CHUA S F S, et al. Carbon dioxide hydrate kinetics in porous media with and without salts[J]. Applied Energy, 2016, 162: 1131-1140. |
50 | LU H L, MATSUMOTO R, TSUJI Y, et al. Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution? —a recognition from experimental results[J]. Fluid Phase Equilibria, 2001, 178(1/2): 225-232. |
51 | 王树立, 张琳, 赵苗苗, 等. 离子液体促进剂对气体水合物生成液表面张力的影响[J]. 精细石油化工, 2014, 31(2): 61-66. |
WANG Shuli, ZHANG Lin, ZHAO Miaomiao, et al. Effects of ionic liquid on surface tension of gas hydrate formation solution[J]. Speciality Petrochemicals, 2014, 31(2): 61-66. | |
52 | DICKENS G R, QUINBY-HUNT M S. Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B1): 773-783. |
53 | SABIL K M, DUARTE A R C, ZEVENBERGEN J, et al. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution[J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 798-805. |
54 | 陈烨, 闫铁, 孙晓峰, 等. 基于Multiflash的天然气水合物相平衡影响因素及规律[J]. 成都理工大学学报(自然科学版), 2020, 47(3): 358-366. |
CHEN Ye, YAN Tie, SUN Xiaofeng, et al. Study on influence factors and rules of gas hydrate phase equilibrium based on multiflash software[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(3): 358-366. | |
55 | 潘振, 刘志明, 刘德俊, 等. 多孔介质中天然气水合物生成影响因素研究进展[J]. 化工进展, 2017, 36(12): 4403-4415. |
PAN Zhen, LIU Zhiming, LIU Dejun, et al. Research progress on influence factors of natural gas hydrate formation in porous media[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4403-4415. | |
56 | 赵红芳, 杨亚玲, 刘东辉, 等. 阴离子-两性离子表面活性剂复配体系及NaCl对其表面活性的影响[J]. 应用化工, 2006, 35(7): 535-536, 542. |
ZHAO Hongfang, YANG Yaling, LIU Donghui, et al. Mixed system of anionic and zwitterionic surfactants and the effects of NaCl on surface activity[J]. Applied Chemical Industry, 2006, 35(7): 535-536, 542. | |
57 | 刘唯一, 陈勇, 王淼, 等. 盐类对甲烷水合物稳定性影响研究进展[J]. 岩矿测试, 2018, 37(2): 111-120. |
LIU Weiyi, CHEN Yong, WANG Miao, et al. Research progress on the effect of salts on the stability of methane hydrate[J]. Rock and Mineral Analysis, 2018, 37(2): 111-120. | |
58 | 杨顶辉, XU Wenyue. 盐度对甲烷气水合物系统的影响[J]. 中国科学(D辑: 地球科学), 2007, 37(10): 1370-1381. |
YANG Dinghui, XU Wenyue. Effect of salinity on methane gas hydrate system [J]. Science in China (Series D: Earth Sciences), 2007, 37(10): 1370-1381. | |
59 | MEKALA P, BABU P, SANGWAI J S, et al. Formation and dissociation kinetics of methane hydrates in seawater and silica sand[J]. Energy & Fuels, 2014, 28(4): 2708-2716. |
[1] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
[2] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[3] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[4] | 王英梅, 张兆慧, 刘生浩, 焦雯泽, 王立瑾, 滕亚栋, 刘杰. 促进剂体系中二氧化碳水合物常压分解[J]. 化工进展, 2022, 41(S1): 141-149. |
[5] | 陆诗建, 刘玲, 刘滋武, 郭伯文, 俞徐林, 梁艳, 赵东亚, 朱全民. AEP-DPA-CuO相变纳米流体吸收CO2稳定性[J]. 化工进展, 2022, 41(8): 4555-4561. |
[6] | 李佩珊, 张梦辰, 李铭杰, 郑文镳, 刘敏超, 谢高艺, 徐晓龙, 刘长宇, 郏建波. 基于二维材料膜构筑纳米流体通道的研究进展[J]. 化工进展, 2022, 41(7): 3745-3757. |
[7] | 李钰璨, 胡定华, 刘锦辉. 氧化铝纳米流体液滴瞬态蒸发速率的演化特性分析[J]. 化工进展, 2022, 41(7): 3493-3501. |
[8] | 林清宇, 王祝, 冯振飞, 凌彪, 陈镇. 扭带结构影响管内传热与熵产的研究进展[J]. 化工进展, 2022, 41(11): 5709-5721. |
[9] | 禹言芳, 陈雅鑫, 孟辉波, 王宗勇, 吴剑华. Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40(S2): 30-39. |
[10] | 马明琰, 翟玉玲, 轩梓灏, 周树光, 李志祥. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186. |
[11] | 王树立,黄俊尧,闫朔,饶永超,贾茹,刘滨. 基于化学亲和力模型的水合物生成动力学[J]. 化工进展, 2020, 39(3): 966-974. |
[12] | 苗淑兰, 陈侠, 周登凤, 兰天骄, 李萍, 王亚楠. 聚苯硫醚生产废水的资源化利用[J]. 化工进展, 2020, 39(10): 4283-4289. |
[13] | 臧徐忠,石尔,傅俊萍,余涛. 磁场调控磁性纳米流体流动和传热研究进展[J]. 化工进展, 2019, 38(12): 5410-5419. |
[14] | 周自成,李煦,郭琳琳,范小振. 十二烷基硫酸钠修饰NiFe2O4对亚甲基蓝的类芬顿催化氧化性能[J]. 化工进展, 2019, 38(12): 5532-5538. |
[15] | 翟玉玲,王江,李龙,马明琰,姚沛滔. 粒径混合比对Al2O3/水纳米流体传热性能影响及评价[J]. 化工进展, 2019, 38(11): 4865-4872. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |