化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 126-139.DOI: 10.16085/j.issn.1000-6613.2021-0968
王帅1(), 赵金柱2, 王荣元3, 崔凯翔1, 敬加强4,5
收稿日期:
2021-05-08
修回日期:
2021-05-19
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
王帅
作者简介:
王帅(1991—),男,博士,讲师,研究方向为易凝高黏原油多相流动保障。E-mail:基金资助:
WANG Shuai1(), ZHAO Jinzhu2, WANG Rongyuan3, CUI Kaixiang1, JING Jiaqiang4,5
Received:
2021-05-08
Revised:
2021-05-19
Online:
2021-11-12
Published:
2021-11-12
Contact:
WANG Shuai
摘要:
稠油节能增输是解决常规原油日渐枯竭、保障原油接替的紧迫需求,然而稠油黏度高、流道黏附性强,使其输送异常困难,是稠油节能增效输送技术瓶颈。根据前期研究本文作者发现,活性水作用下稠油乳化降黏的同时可改变稠油与管内壁界面特性,以及稠油提高采收率——润湿性之润湿反转,提出管输稠油乳化降黏及其流固界面润湿耦合作用流动减阻新思路。本文基于国内外相关研究成果的系统分析,探讨稠油乳化降黏、流固界面润湿及耦合减阻的有效性,剖析活性水作用乳化/润湿耦合减阻存在的主要问题,理论分析稠油在管输过程中实现乳化/润湿耦合减阻的可行性。结果表明,乳化/润湿减阻思路在理论上是可行的,而且在表面活性剂作用下乳化降黏的同时管输流固界面润湿反转更容易实施,然而,乳化/润湿减阻实际应用缺乏充分认识尚需深入研究其相关科学问题;其深入研究有望理解与认识流固界面特性对流动阻力的影响作用,可解决管输稠油流动阻力之难题,将为稠油流动改进提供理论与技术支撑,在稠油管输节能增效方面具有广阔的应用前景。
中图分类号:
王帅, 赵金柱, 王荣元, 崔凯翔, 敬加强. 乳化/润湿耦合作用稠油流动减阻新思路[J]. 化工进展, 2021, 40(S2): 126-139.
WANG Shuai, ZHAO Jinzhu, WANG Rongyuan, CUI Kaixiang, JING Jiaqiang. New ideas of heavy oil flow drag reduction by emulsification and wetting coupling action[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 126-139.
1 | 邹才能, 潘松圻, 赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416-426. |
ZOU C N, PAN S Q, ZHAO Q. On the connotation, challenge and significance of China’s“energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416-426. | |
2 | CONTRERAS-MATEUS M, LÓPEZ-LÓPEZ M, ARIZA-LEON E, et al. Rheological implications of the inclusion of ferrofluids and the presence of uniform magnetic field on heavy and extra-heavy crude oils[J]. Fuel, 2021, 285: 119184. |
3 | GUDALA M, BANERJEE S, NAIYA T, et al. Hydrodynamics and energy analysis of heavy crude oil transportation through horizontal pipelines using novel surfactant[J]. Journal of Petroleum Science and Engineering, 2019, 178: 140-151. |
4 | TABORDA E, ALVARADO V, CORTÉS F. Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: economic impacts on the Colombian market[J]. Energy Conversion and Management, 2017, 148: 30-42. |
5 | LI P C, ZHANG F S, GONG Y J, et al. Synthesis and properties of functional polymer for heavy oil viscosity reduction[J]. Journal of Molecular Liquids,2021, 330: 115635. |
6 | 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 2020, 41(12): 1445-1464. |
JIA C Z. Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445-1464. | |
7 | LI H Y, ZHANG J J, XU Q G, et al. Influence of asphaltene on wax deposition: deposition inhibition and sloughing[J]. Fuel, 2020, 266: 117047, 1-8. |
8 | 高德利, 朱旺喜, 李军, 等. 深水油气工程科学问题与技术瓶颈——第147期双清论坛学术综述[J]. 中国基础科学, 2016, 18(3): 1-6. |
GAO D L, ZHU W X, LI J, et al. Scientific problems and technical bottlenecks in deepwater oil & gas engineering—Academic review of the 147th Shuangqing forum[J]. China Basic Science, 2016, 18(3): 1-6. | |
9 | MARTÍNEZ-PALOU R, MOSQUEIRA M, ZAPATA-RENDÓN B, et al. Transportation of heavy and extra-heavy crude oil by pipeline: a review[J]. Journal of Petroleum Science and Engineering, 2011, 75: 274-282. |
10 | 张劲军. 易凝高黏原油管输技术及其发展[J]. 中国工程科学, 2002, 4(6): 71-76. |
ZHANG J J. Technologies for pipelining high-pour-point and viscous crudes and their development[J]. Engineering Science, 2002, 4(6): 71-76. | |
11 | 赵德银, 郭靖, 樊敏, 等. 油田采出液输送中降黏减阻剂研究进展[J]. 材料保护, 2020, 53(11): 122-128. |
ZHAO D Y, GUO J, FAN M, et al. Progress of viscosity - reducing and drag-reducing agents in the transportation of the oil produced fluid[J]. Materials Protection, 2020, 53(11): 122-128. | |
12 | 熊钰, 冷傲燃, 孙业恒, 等. 稠油冷采降黏剂分散机理与驱替实验评价[J]. 新疆石油地质, 2021, 42(1): 68-75. |
XIONG Y, LENG A R, SUN Y H, et al. Dispersion mechanism of viscosity reducer and evaluation of displacement experiment for cold production of heavy oil[J]. Xinjiang Petroleum Geology, 2021, 42(1): 68-75. | |
13 | SANTOS R, BRINCENO M, LOH W. Laminar pipeline flow of heavy oil-in-water emulsions produced by continuous in-line emulsification[J]. Journal of Petroleum Science and Engineering, 2017, 156: 827-834. |
14 | NOWROUZI I, MOHAMMADI A, MANSHAD A. Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106901, 1-10. |
15 | ESLAMI A, TAGHAVI S. Viscous fingering of yield stress fluids: the effects of wettability[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 264: 25-47. |
16 | 王新宇, 张帅拓, 刘建, 等. 表面织构对管道内壁碳基涂层润湿性与摩擦学性能影响[J]. 摩擦学学报, 2021, 41(1): 86-94. |
WANG X, ZHANG S, LIU J, et al. Effect of surface texture on wettability and tribological properties of carbon-based coatings on the inner surface of pipes[J]. Tribology, 2021, 41(1): 86-94. | |
17 | JOSEPH D. Lubricated pipelining[J]. Powder Technology, 1997, 94: 211-215. |
18 | TRIPATHI S, BHATTACHARY A, SINGH R, et al. Lubricated transport of highly viscous non-newtonian fluid as core-annular flow: a CFD study[J]. Procedia IUTAM, 2015, 15: 278-285. |
19 | 郡捷年. 无机离子在油基泥浆所引起储层润湿反转过程中的作用[J]. 石油学报, 1992, 13(4): 104-113. |
YAN J N. The role of inorganic ions played in the vettability reversal of reservoir rocks caused by oil-based muds[J]. Acta Petrolei Sinica, 1992, 13(4): 104-113. | |
20 | 蒋平, 张贵才, 葛际江, 等. 表面活性剂剥离固体表面原油机理[J]. 石油学报(石油加工), 2008, 24(2): 222-226. |
JIANG P, ZHANG G C, GE J J, et al. The mechanism of oil displacement from solid surface by surfactant[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 24(2): 222-226. | |
21 | 任晓娟, 刘宁, 曲志浩, 等. 改变低渗透砂岩亲水性油气层润湿性对其相渗透率的影响[J]. 石油勘探与开发, 2005, 32(3): 123-124. |
REN X J, LIU N, QU Z H, et al. Effect of wettability alteration on the relative permeability of low-permeability water-wet oil and gas reservoir[J]. Petroleum Exploration and Development, 2005, 32(3): 123-124. | |
22 | PEYSSON Y, BENSAKHRIA A, ANTONINI G, et al. Pipeline lubrication of heavy oil: experimental investigation of flow and restart problems[C]// Prepared for presentation at the SPE International Thermal Operationsand Heavy Oil Symposium held in Calgary, Alberta, Canada, 2005. |
23 | 张明露, 马挺, 李国强, 等. 一株耐热石油烃降解菌的细胞疏水性及乳化、润湿作用研究[J]. 微生物学通报, 2008, 35(9): 1348-1352. |
ZHANG M, MA T, LI G Q, et al. Cell-surface hydrophobicity, emulsification and wetting property of a high temperature hydrocarbon-degrading strain[J]. Microbiology, 2008, 35(9): 1348-1352. | |
24 | 李小波, 刘曰武, 李树皎, 等. 乳化和润湿反转现象的耗散粒子动力学研究[J]. 石油学报, 2009, 30(2): 259-262. |
LI X B, LIU Y W, LI S J, et al. Simulation of emulsification and wettability alteration phenomena with dissipative particle dynamics[J]. Acta Petrolei Sinica, 2009, 30(2): 259-262. | |
25 | 李爱芬, 任晓霞, 江凯亮, 等. 表面活性剂改善稠油油藏水驱开发效果实验研究——以东辛油田深层稠油油藏为例[J]. 油气地质与采收率, 2014, 21(2): 18-21. |
LI A F, REN Xiaoxia, JIANG Kailianget al. Experimental study on influencing factors of injecting surfactant to improve water flooding for heavy oil reservoir-case of Dongxin heavy oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(2): 18-21. | |
26 | SILVA R D, MOHAMED R S, BANNWART A C. Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J]. Journal of Petroleum Science and Engineering, 2006, 51: 17-25. |
27 | 孙娜娜, 敬加强, 蒋华义, 等. 稠油水包油型乳状液表观黏度的影响因素及预测模型[J]. 石油学报(石油加工), 2016, 32(5): 987-996. |
SUN N N, JING J Q, JIANG H Y, et al. Influencing factors and prediction model of apparent viscosity of heavy oil O/W emulsion[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(5): 987-996. | |
28 | GONG H J, LI Y J, DONG M Z, et al. Effect of wettability alteration on enhanced heavy oil recovery by alkaline flooding[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488: 28-35. |
29 | QI H Y, LIANG A G, JIANG H Y, et al. Effect of pipe surface wettability on flow slip property[J]. Industrial & Engineering Chemistry Research, 2018, 57: 12543-12550. |
30 | 姚同玉, 萧汉敏, 孙灵辉. 系列季铵盐型表面活性剂润湿性能与润湿模型研究[J]. 表面技术, 2018, 47(10): 66-71. |
YAO T Y, XIAO H M, SUN L H. Wetting behavior and wetting model of series quaternary ammonium surfactant[J]. Surface Technology, 2018, 47(10): 66-71. | |
31 | 孙灵辉, 吴赞校, 姚同玉, 等. 新型季铵盐Gemini表面活性剂润湿性能测定与润湿模型建立[J]. 油田化学, 2018, 35(4): 709-714. |
SUN L H,WU Z X,YAO T Y, et al. Wettability determination and wetting model of a new quaternary ammonium salt Gemini surfactant[J]. Oilfield Chemistry, 2018, 35(4): 709-714. | |
32 | LIU L M, PAN Y L, JIANG K D, et al. On-demand oil/water separation enabled by magnetic super-oleophobic/super-hydrophilic surfaces with solvent-responsive wettability transition[J]. Applied Surface Science, 2020, 533: 147092. |
33 | MOHAMMED M, BABADAGLI T. New insights into the interfacial phenomena occurring between hydrocarbon solvent and heavy oil[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108022, 1-19. |
34 | SIMON S, RUWOLDT J, SJÖBLOM J. A critical update of experimental techniques of bulk and interfacial components for fluid characterization with relevance to well fluid processing and transport[J]. Advances in Colloid and Interface Science, 2020, 277: 102120. |
35 | ZHANG L, XIE L, CUI X W, et al. Intermolecular and surface forces at solid/oil/water/gas interfaces in petroleum production[J]. Journal of Colloid and Interface Science, 2019, 537: 505-519. |
36 | KAZZAZ A E, FATEHI P. Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface[J]. Journal of Colloid and Interface Science, 2020, 561: 231-243. |
37 | UMAR A A, SAAID I B, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165: 673-690. |
38 | ASHRAFIZADEH S N, MOTAEE E, HOSHYARGAR V. Emulsification of heavy crude oil in water by natural surfactants[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 137-143. |
39 | MALKIN A Y, ZADYMOVA N M, SKVORTSOVA Z N, et al. Formation of concentrated emulsions in heavy oil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 343-349. |
40 | 孙广宇, 张劲军. W/O型原油乳状液及其凝胶流变特性研究进展[J]. 油气储运, 2016, 35(3): 229-240. |
SUN G Y, ZHANG J J. Progress in rheological studies of W/O emulsion and its gel[J]. Oil & Gas Storage and Transportation, 2016, 35(3): 229-240. | |
41 | ZADYMOVA N M, SKVORTSOVA Z N, TRASKIN V Y, et al. Heavy oil as an emulsion: composition, structure, and rheological properties[J]. Colloid Journal, 2016, 78(6): 735-746. |
42 | 寇杰, 肖荣鸽. 东辛稠油反相乳化降黏集输试验[J]. 中国石油大学学报(自然科学版), 2010, 34(4): 162-166. |
KOU J, XIAO R G. Experiment on invert emulsion viscosity reducing transportation for Dongxin heavy oil[J]. Journal of China University of Petroleum, 2010, 34(4): 162-166. | |
43 | 蒋华义, 张兰新, 孙娜娜, 等. 稠油水包油型乳状液稳定性与流变性影响因素[J]. 油气储运, 2018, 37(10):1121-1127. |
JIANG H Y, ZHANG L X, SUN N N, et al. The factors influencing the stability and rheological property of heavy O/W emulsion[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1121-1127. | |
44 | LEE J, BABADAGLI T. Comprehensive review on heavy-oil emulsions: colloid science and practical applications[J]. Chemical Engineering Science, 2020, 228: 115962. |
45 | BAZYLEVA A B, HASAN M D, FULEM M, et al. Bitumen and heavy oil rheological properties: reconciliation with viscosity measurements[J]. Journal of Chemical and Engineering Data, 2010, 55(3): 1389-1397. |
46 | ZHANG J, XU J, GAO M, et al. Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region[J]. Journal of Dispersion Science and Technology, 2013, 34(8): 1148-1160. |
47 | WEN J, LUO H, LONG Z. Emulsification behaviors of crude oil-water system and its quantitative relationship with exergy loss rate[J]. Journal of Petroleum Science and Engineering, 2019, 176: 502-508. |
48 | ASHRAFIZADEH S N, KAMRAN M. Emulsification of heavy crude oil in water for pipeline transportation[J]. Journal of Petroleum Science and Engineering, 2010, 71: 205-211. |
49 | 安云朋, 敬加强, 刘雪健, 等. 稠油O/W型乳状液的低温稳定性[J]. 油田化学, 2014, 31(2): 256-260. |
AN Y P, JING J Q, LIU X J, et al. Stability of heavy oil-in-water emulsion at low temperature[J]. Oilfield Chemistry, 2014, 31(2): 256-260. | |
50 | MEROLA M C, CAROTENUTO C, GARGIULO V, et al. Chemical-physical analysis of rheologically different samples of a heavy crude oil[J]. Fuel Processing Technology, 2016, 148: 236-247. |
51 | SUN N N, JING J Q, JIANG H Y, et al. Effects of surfactants and alkalis on the stability of heavy-oil-in-water emulsions[J]. SPE Journal, 2017, 2: 120-129. |
52 | PANG S S, PU W F, XIE J Y, et al. Investigation into the properties of water-in-heavy oil emulsion and its role in enhanced oil recovery during water flooding[J]. Journal of Petroleum Science and Engineering, 2019, 177: 798-807. |
53 | ABDULREDHA M M, HUSSAIN S A, ABDULLAH L C. Overview on petroleum emulsions, formation, influence and demulsification treatment techniques[J]. Arabian Journal of Chemistry, 2020, 13: 3403-3428. |
54 | 李美蓉, 向浩, 马济飞. 特稠油乳化降黏机理研究[J]. 燃料化学学报, 2006, 34(2): 175-178. |
LI M R, XIANG H, MA J F. Mechanism of viscosity reduction of ultra-heavy oil by emulsification[J]. Journal of Fuel Chemistry and Technology, 2006, 34(2): 175-178. | |
55 | KRALOVA I, SJÖBLOM J, ØYE G, et al. Heavy crude oils/particle stabilized emulsions[J]. Advances in Colloid and Interface Science, 2011, 169: 106-127. |
56 | 李美蓉, 赵娜娜, 方洪波, 等. 表征化学驱采出液稳定性不同指标的关联性[J]. 石油学报(石油加工), 2012, 28(4): 612-616. |
LI M R, ZHAO N N, FANG H B, et al. Relevance between characterization indices of the stability of chemical flooding produced fluid[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(4): 612-616. | |
57 | 李美蓉, 齐霖艳, 王伟琳, 等. 胜利超稠油的乳化降黏机理研究[J]. 燃料化学学报, 2013, 41(6): 679-684. |
LI M R, QI L Y, WANG W L, et al. Mechanism of viscosity reduction of super heavy oil of Shengli oil field[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 679-684. | |
58 | ZHOU H D, DAI C L, ZHANG Q S, et al. Interfacial rheology of novel functional silica nanoparticles adsorbed layers at oil-water interface and correlation with Pickering emulsion stability[J]. Journal of Molecular Liquids, 2019, 293: 111500. |
59 | PEI H H, SHU Z, ZHANG G C, et al. Experimental study of nanoparticle and surfactant stabilized emulsion flooding to enhance heavy oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 163: 476-483. |
60 | IMANIA I M, AZIZIAN S, NOEI N, et al. Study of O/W emulsion stability in presence of SDS and graphitic carbon nitride (g-C3N4) nanosheets[J]. Colloids and Surfaces A, 2020, 586: 124191. |
61 | TIAN S J, WEI G, LIU Y J, et al. Study on the stability of heavy crude oil-in-water emulsions stabilized by two different hydrophobic amphiphilic polymers[J]. Colloids and Surfaces A, 2019, 572: 299-306. |
62 | 王艳萍, 孙风跃, 梁心怡, 等. 耐温耐盐乳化降黏剂的结构设计及其构效关系[J]. 精细化工, 2020, 37(4): 826-833. |
WANG Y P, SUN F Y, LIANG X Y, et al. Structure design and structure-function relationship of emulsified viscosity reducers with temperature resistance and salt tolerance[J]. Fine Chemicals, 2020, 37(4): 826-833. | |
63 | PIROOZIAN A, HEMMATIC M, SAFARI M, et al. A mechanistic understanding of the water-in-heavy oil emulsion viscosity variation: effect of asphaltene and wax migration[J]. Colloids and Surfaces A, 2021, 608: 125604. |
64 | 孙广宇, 张劲军. 含蜡原油乳状液凝胶结构裂降行为模型[J]. 油气储运, 2017, 36(1): 49-58. |
SUN Guangyu, ZHANG Jinjun. A model used to describe the structural breakdown behavior of waxy crude oil emulsion gel[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 49-58. | |
65 | AFRA S, NASR-EL-DIN H A, SOCCI D, et al. Green phenolic amphiphile as a viscosity modifier and asphaltenes dispersant for heavy and extra-heavy oil[J]. Fuel, 2018, 220: 481-489. |
66 | CHEN Q, ZHU Y, WANG M, et al. Viscosity reduction of extra-heavy oil using toluene in water emulsions[J]. Colloids and Surfaces A, 2019, 560: 252-259. |
67 | NETO D M, SAD C M, SILVA M, et al. Rheological study of the behavior of water-in-oil emulsions of heavy oils[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1323-1331. |
68 | CISNEROS-DÉVORA R, CERÓN-CAMACHO R, SOTO-CASTRUITA E, et al. A theoretical study of crude oil emulsions stability due to supramolecular assemblies[J]. Colloids and Surfaces A, 2019, 567: 121-127. |
69 | 辛寅昌, 董晓燕, 卞介萍, 等. 高矿化度稠油流动的影响因素及改善原油流动的方法[J]. 石油学报, 2010, 31(3): 480-485. |
XIN Y C, DONG X Y, BIAN J P, et al. Affecting factors for flow ability of high-salinity heavy oil and methods for improving oil mobility[J]. Acta Petrolei Sinica, 2010, 31(3): 480-485. | |
70 | KUMAR S, MAHTO V. Emulsification of Indian heavy crude oil in water for its efficient transportation through offshore pipelines[J]. Chemical Engineering Research and Design, 2016, 115: 34-43. |
71 | SANTOS R, BANNWART A, LOH W. Phase segregation, shear thinning and rheological behavior of crude oil-in-water emulsions[J]. Chemical Engineering Research and Design, 2014, 92: 1629-1636 |
72 | 王卫强, 崔静, 吴尚书, 等. 石油烃降解菌Pseudomonas sp. 及其生物表面活性剂对原油处理效果分析[J]. 石油学报(石油加工), 2020, 36(5): 1039-1046. |
WANG W Q, CUI J, WU S S, et al. Effect of petroleum hydrocarbon decomposing bacteria Pseudomonas sp. and itsbiosurfactants on crude oil treatment[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1039-1046. | |
73 | JING J Q, SUN J, TAN J T, et al. Investigation on flow patterns and pressure drops of highly viscous crude oil-water flows in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2016, 72: 88-96. |
74 | 敬加强, 齐红媛, 梁爱国, 等. 管道表面润湿性对层流流动阻力的影响[J]. 化工进展, 2017, 36(9): 3203-3209. |
JING J Q, QI H Y, LIANG A G, et al. Experimental research on the effect of pipe surface wettability on flow resistance in laminar flow[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3203-3209. | |
75 | 齐红媛, 梁爱国, 蒋华义, 等. 水预润湿对液体管道流动阻力特性的影响[J]. 石油化工, 2019, 48(1): 36-41. |
QI H Y, LIANG A G, JIANG H Y, et al. Effect of water prewetting on flow resistance property in liquid pipe[J]. Petrochemical Technology, 2019, 48(1): 36-41. | |
76 | 许道振, 张劲军, 王彬, 等. 预润湿对管道润湿性的影响[J]. 西南石油大学学报(自然科学版), 2016, 38(6): 147-151. |
XU D Z, ZHANG J J, WANG B, et al. Effect of pre-wetting on pipeline wettability[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(6) 147-151. | |
77 | ZHANG J, CHEN X P, ZHANG D, et al. Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China[J]. Journal of Petroleum Science and Engineering, 2017, 156: 563-574. |
78 | ZHANG J, XU J Y. Rheological behaviour of oil and water emulsions and their flow characterization in horizontal pipes[J]. The Canadian Journal of Chemical Engineering, 2016, 94: 324-331. |
79 | 齐红媛. 液体管道内壁润湿性及流动特性研究[D]. 成都: 西南石油大学, 2017. |
QI H Y. Study on inner wall wettability and flow property in liquid pipe[D]. Chengdu: Southwest Petroleum University, 2017. | |
80 | JING J Q, DU M J, YIN R, et al. Numerical study on two-phase flow characteristics of heavy oil-water ring transport boundary layer[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107173. |
81 | 王炳捷, 李辉, 杨晓勇, 等. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735. |
WANG B J, LI H, YANG X Y, et al. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. |
[1] | 张晓华, 姜岩, 岳希权, 张贤明. 生物表面活性剂驱油研究进展[J]. 化工进展, 2016, 35(07): 2033-2040. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |