化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4791-4798.DOI: 10.16085/j.issn.1000-6613.2022-1974
张岱凌(), 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛(
)
收稿日期:
2022-10-24
修回日期:
2022-12-15
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
安瑛
作者简介:
张岱凌(1998-),男,硕士研究生,研究方向为纳米流体光热转换。E-mail:2020200595@buct.edu.cn。
基金资助:
ZHANG Dailing(), DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying(
)
Received:
2022-10-24
Revised:
2022-12-15
Online:
2023-09-15
Published:
2023-09-28
Contact:
AN Ying
摘要:
在目前的废弃打印机和硒鼓处理中,废弃墨粉往往被忽略,导致弥散到空气中引发呼吸系统疾病。本文以废弃墨粉为吸光材料进行光热利用,采用两步法制备不同浓度的废弃墨粉-乙二醇苯醚纳米流体,研究其稳定性、光学性能和光热转换性能。结果表明:在不添加任何表面活性剂的情况下,废弃墨粉-乙二醇苯醚纳米流体具有较好的稳定性。添加废弃墨粉颗粒可以降低基液的透光率,增大消光系数,从而提高基液的光吸收能力。在光热转换实验中,每种浓度的废弃墨粉纳米流体都表现出较好的光热转换效果,本实验中最佳质量分数为0.04%,在经过1800s的辐照(辐射强度为1000W/m2)后,全程光热转换效率可达54.95%,比基液乙二醇苯醚提高了90.41%。本研究以期为废弃墨粉的转化与再利用提供新思路。
中图分类号:
张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798.
ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798.
研究者 | 分散物 | 基液 | 实验最佳浓度/% | 光热转换效率/% | 光热转换效率比基液提高/% |
---|---|---|---|---|---|
Hazra等[ | BN/炭黑 | 乙二醇 | 0.0015 | 82.50 | 35 |
李富恒[ | 石墨烯 | 乙二醇 | 0.0007 | 76.36 | 49.65 |
Guo等[ | 碳纳米管 | 水 | 0.01 | 65 | 51.16 |
Li等[ | β-环糊精碳纳米管 | 乙二醇 | 0.1 | 81.30 | 64.24 |
Tong等[ | 碳纳米管/Fe3O4 | 水 | 0.05 | 46 | 76.92 |
本研究 | 废弃墨粉 | 乙二醇苯醚 | 0.04 | 54.95 | 90.41 |
表1 不同纳米流体光热转换实验结果对比
研究者 | 分散物 | 基液 | 实验最佳浓度/% | 光热转换效率/% | 光热转换效率比基液提高/% |
---|---|---|---|---|---|
Hazra等[ | BN/炭黑 | 乙二醇 | 0.0015 | 82.50 | 35 |
李富恒[ | 石墨烯 | 乙二醇 | 0.0007 | 76.36 | 49.65 |
Guo等[ | 碳纳米管 | 水 | 0.01 | 65 | 51.16 |
Li等[ | β-环糊精碳纳米管 | 乙二醇 | 0.1 | 81.30 | 64.24 |
Tong等[ | 碳纳米管/Fe3O4 | 水 | 0.05 | 46 | 76.92 |
本研究 | 废弃墨粉 | 乙二醇苯醚 | 0.04 | 54.95 | 90.41 |
1 | 宋庆彬, 李金惠, 董庆银, 等. 我国废旧硒鼓墨盒回收与处理现状研究[J]. 环境工程, 2015, 33(7): 113-117. |
SONG Qingbin, LI Jinhui, DONG Qingyin, et al. Studies on recycling and treatment status of waste toner and ink cartridges in china[J]. Environmental Engineering, 2015, 33(7): 113-117, 108. | |
2 | 茆吉庆, 黎阳, 蒋诗, 等. 废弃墨粉的回收及其电化学储能应用研究[J]. 环境工程, 2016, 34(S1): 715-718. |
MAO Jiqing, LI Yang, JIANG Shi, et al. Recycling of waste toner and its application in electrochemical energy storage[J]. Environmental Engineering, 2016, 34(S1): 715-718. | |
3 | 章雨勤, 程知萱, 张源, 等. 利用废弃硒鼓墨粉制备γ-Fe2O3气敏材料[J]. 郑州大学学报(工学版), 2016, 37(4): 44-48. |
ZHANG Yuqin, CHENG Zhixuan, ZHANG Yuan, et al. Use of waste toner cartridges for preparing γ-Fe2O3 sensitive material[J]. Journal of Zhengzhou University (Engineering Science), 2016, 37(4): 44-48. | |
4 | KHEDAYWI T S. Study on utilising waste toner in asphalt cement[J]. Road Materials and Pavement Design, 2014, 15(2): 446-454. |
5 | 李诗琦, 李闯民, 李元元. 回收碳粉改性沥青制备参数及性能研究[J]. 石油沥青, 2016, 30(6): 25-30. |
LI Shiqi, LI Chuangmin, LI Yuanyuan. Preparation parameters and performance study of recycled carbon powder modified asphalt[J]. Petroleum Asphalt, 2016, 30(6): 25-30. | |
6 | 宗美林, 叶晓江, 常怀钟, 等. 水基碳纳米管纳米流体在室外自然条件下的光热性能研究[J]. 太阳能学报, 2020, 41(5): 48-53. |
ZONG Meilin, YE Xiaojiang, CHANG Huaizhong, et al. Study on photo-thermal conversion characteristics of water-based carbon nanotubes in outdoor natural condition[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 48-53. | |
7 | 屈健, 张若梅, 田敏. 氧化铜-碳纳米管/水混合纳米流体的光热性能[J]. 化工进展, 2018, 37(6): 2125-2131. |
QU Jian, ZHANG Ruomei, TIAN Min. Photo-thermal properties of hybrid CuO-MWCNT/H2O nanofluids[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2125-2131. | |
8 | 周玲, 尹淼, 陈钰琦, 等. 油基CuO和HgS纳米流体的光热转换特性研究[J]. 太阳能学报, 2017, 38(6): 1620-1625. |
ZHOU Ling, YIN Miao, CHEN Yuqi, et al. Photothermal conversion properties of oil-based CuO and HgS nanofluids[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1620-1625. | |
9 | HAZRA S K, GHOSH S, NANDI T K. Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors[J]. Applied Thermal Engineering, 2019, 163: 114402. |
10 | 刘闪威. 槽式太阳能熔盐集热传热的试验研究[D]. 北京: 北京工业大学, 2013. |
LIU Shanwei. Experimental study on heat transfer with molten salt in trough solar collector system[D]. Beijing: Beijing University of Technology, 2013. | |
11 | SAIDUR R, MENG T C, SAID Z, et al. Evaluation of the effect of nanofluid-based absorbers on direct solar collector[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5899-5907. |
12 | 凌智勇, 黄跃涛, 张忠强, 等. 表面活性剂对Cu-H2O和ZrO2-H2O纳米流体稳定性的影响[J]. 功能材料, 2015, 46(10):10100-10103. |
LING Zhiyong, HUANG Yuetao, ZHANG Zhongqiang, et al. Effect of surfactants on the stability of Cu-H2O and ZrO2-H2O nanofluids[J]. Journal of Functional Materials, 2015, 46(10):10100-10103. | |
13 | 王良虎, 向军, 李菊香. 纳米流体的稳定性研究[J]. 材料导报, 2011, 25(S1): 17-20. |
WANG Lianghu, XIANG Jun, LI Juxiang. Study on stability of nanofluid[J]. Materals Review, 2011, 25(S1): 17-20. | |
14 | MEHRALI M, GHATKESAR M K, PECNIK R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids[J]. Applied Energy, 2018, 224: 103-115. |
15 | WANG Han, YANG Weimin, CHENG Lisheng, et al. Chinese ink: High performance nanofluids for solar energy[J]. Solar Energy Materials and Solar Cells, 2018, 176: 374-380. |
16 | ZEINY A, JIN H C, BAI L Z, et al. A comparative study of direct absorption nanofluids for solar thermal applications[J]. Solar Energy, 2018, 161: 74-82. |
17 | MENG Zhaoguo, HAN Dongxiao, WU Daxiong, et al. Thermal conductivities, rheological behaviors and photothermal properties of ethylene glycol-based nanofluids containing carbon black nanoparticles[J]. Procedia Engineering, 2012, 36: 521-527. |
18 | KHOSROJERDI S, LAVASANI A, VAKILI M. Experimental study of photothermal specifications and stability of graphene oxide nanoplatelets nanofluid as working fluid for low-temperature direct absorption solar collectors (DASCs)[J]. Solar Energy Materials and Solar Cells, 2017, 164: 32-39. |
19 | GUO Chenglong, LIU Can, JIAO Shaokai, et al. Introducing optical fiber as internal light source into direct absorption solar collector for enhancing photo-thermal conversion performance of MWCNT-H2O nanofluids[J]. Applied Thermal Engineering, 2020, 173: 115207. |
20 | LI Xiaoke, CHEN Wenjing, ZOU Changjun. An experimental study on β-cyclodextrin modified carbon nanotubes nanofluids for the direct absorption solar collector (DASC): Specific heat capacity and photo-thermal conversion performance[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110240. |
21 | JEONG M G, KIM J B, QIN C Y, et al. Synthesis of therminol-graphite nanofluids and photo-thermal conversion properties[J]. International Journal of Energy Research, 2021, 45(7): 11320-11328. |
22 | TANG Zhenglai, SONG Dongxing, MA Weigang, et al. Two-level synergistic scatterings from porosity and particle aggregation in Cu nanofluids for the enhancement of solar thermal conversion[J]. Journal of Molecular Liquids, 2021, 342: 116940. |
23 | KIMPTON H, ZHANG X L, STULZ E. The temperature stability and development of a broadband silver nanofluid for solar thermal applications[J]. Energy Reports, 2021, 7: 87-96. |
24 | CHEN Meijie, HE Yurong, HUANG Jian, et al. Investigation into Au nanofluids for solar photothermal conversion[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1894-1900. |
25 | TONG Y J, BOLDOO T, HAM J, et al. Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid[J]. Energy, 2020, 196:117086. |
26 | KARAMI M, AKHAVAN-BEHABADI M A, RAISEE DEHKORDI M, et al. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation[J]. Solar Energy Materials and Solar Cells, 2016, 144: 136-142. |
27 | ESMAEILI M, KARAMI M, DELFANI S. Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid[J]. International Journal of Energy Research, 2020, 44(7): 5527-5544. |
28 | HATAMI M, JING D W. Evaluation of wavy direct absorption solar collector (DASC) performance using different nanofluids[J]. Journal of Molecular Liquids, 2017, 229: 203-211. |
29 | CHEN Wenjing, ZOU Changjun, LI Xiaoke. An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2017, 163: 157-163. |
30 | MENG Zhaoguo, LI Yang, CHEN Nan, et al. Broad-band absorption and photo-thermal conversion properties of zirconium carbide aqueous nanofluids[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 286-292. |
31 | HAZRA S K, MICHAEL M, NANDI T K. Investigations on optical and photo-thermal conversion characteristics of BN-EG and BN/CB-EG hybrid nanofluids for applications in direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111245. |
32 | WANG Kongxiang, HE Yan, LIU Pengyu, et al. Highly-efficient nanofluid-based direct absorption solar collector enhanced by reverse-irradiation for medium temperature applications[J]. Renewable Energy, 2020, 159: 652-662. |
33 | 王威, 王宝群, 刘京玲, 等. 墨粉的制备及发展概况[J]. 中国材料进展, 2012, 31(1): 1-7. |
WANG Wei, WANG Baoqun, LIU Jingling, et al. Situation for toner production and development[J]. Materials China, 2012, 31(1): 1-7. | |
34 | 何钦波. 外加磁场强化磁性纳米流体的光热特性及机理研究[D]. 广州: 华南理工大学, 2015. |
HE Qinbo. Experimental investigation on photothermal properties of magnetic nanofluids under magnetic field[D]. Guangzhou: South China University of Technology, 2015. | |
35 | PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
36 | 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485. |
LI Fuheng. Investigation on photothermal conversion characteristics of graphene nanosheets-glycol nanofluids[J]. CIESC Journal, 2020, 71(S1): 479-485. |
[1] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[2] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[3] | 郝旭波, 牛宝联, 郭昊天, 徐祥和, 张忠斌, 李应林. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871. |
[4] | 陆诗建, 刘玲, 刘滋武, 郭伯文, 俞徐林, 梁艳, 赵东亚, 朱全民. AEP-DPA-CuO相变纳米流体吸收CO2稳定性[J]. 化工进展, 2022, 41(8): 4555-4561. |
[5] | 李佩珊, 张梦辰, 李铭杰, 郑文镳, 刘敏超, 谢高艺, 徐晓龙, 刘长宇, 郏建波. 基于二维材料膜构筑纳米流体通道的研究进展[J]. 化工进展, 2022, 41(7): 3745-3757. |
[6] | 李钰璨, 胡定华, 刘锦辉. 氧化铝纳米流体液滴瞬态蒸发速率的演化特性分析[J]. 化工进展, 2022, 41(7): 3493-3501. |
[7] | 林清宇, 王祝, 冯振飞, 凌彪, 陈镇. 扭带结构影响管内传热与熵产的研究进展[J]. 化工进展, 2022, 41(11): 5709-5721. |
[8] | 王英梅, 牛爱丽, 张兆慧, 展静, 张学民. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125. |
[9] | 禹言芳, 陈雅鑫, 孟辉波, 王宗勇, 吴剑华. Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40(S2): 30-39. |
[10] | 马明琰, 翟玉玲, 轩梓灏, 周树光, 李志祥. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186. |
[11] | 臧徐忠,石尔,傅俊萍,余涛. 磁场调控磁性纳米流体流动和传热研究进展[J]. 化工进展, 2019, 38(12): 5410-5419. |
[12] | 翟玉玲,王江,李龙,马明琰,姚沛滔. 粒径混合比对Al2O3/水纳米流体传热性能影响及评价[J]. 化工进展, 2019, 38(11): 4865-4872. |
[13] | 李原,狄勤丰,华帅,张景楠,叶峰,王文昌. 纳米流体对储层润湿性反转提高石油采收率研究进展[J]. 化工进展, 2019, 38(08): 3612-3620. |
[14] | 闫鑫, 徐进良. 太阳能加热液滴在亲疏水表面“黏-滑”蒸发[J]. 化工进展, 2019, 38(06): 2618-2625. |
[15] | 章学来,郑钦月,田镇,王章飞,贾潇雅,陈跃,周鑫晨,甘伟. 纳米TiO2 流体表面改性及对真空闪蒸制冰的影响[J]. 化工进展, 2019, 38(03): 1197-1206. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |