化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3745-3757.DOI: 10.16085/j.issn.1000-6613.2021-1852
李佩珊(), 张梦辰(), 李铭杰, 郑文镳, 刘敏超, 谢高艺, 徐晓龙, 刘长宇, 郏建波
收稿日期:
2021-08-30
修回日期:
2021-09-20
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
张梦辰
作者简介:
李佩珊(1997—),女,硕士研究生,研究方向为氧化石墨烯纳滤膜设计制备。E-mail:基金资助:
LI Peishan(), ZHANG Mengchen(), LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo
Received:
2021-08-30
Revised:
2021-09-20
Online:
2022-07-25
Published:
2022-07-23
Contact:
ZHANG Mengchen
摘要:
纳米流体学涉及在纳米尺度通道内流体独特的传输行为,近年来引起了研究者们的广泛兴趣。二维(2D)材料的出现以及2D材料膜的快速发展,开创了纳米流体研究的新时代。本文综述了近年来基于二维材料膜构筑纳米流体通道的研究进展,着重介绍了二维材料膜纳米流体通道的构筑方法,包括“自上而下”策略、“自下而上”策略、人工造孔策略制备二维材料多孔膜,以及范德华组装策略、液相组装策略制备二维材料叠层膜;深入讨论了二维材料膜纳米流体通道的调控手段,包括通道尺寸、长度和形状等物理结构的精密控制,通道亲和性、电荷性等化学环境的合理设计;最后总结展望了二维材料膜纳米流体在材料开发、仿生设计、传输机理和器件应用等方面所面临的机遇与挑战。
中图分类号:
李佩珊, 张梦辰, 李铭杰, 郑文镳, 刘敏超, 谢高艺, 徐晓龙, 刘长宇, 郏建波. 基于二维材料膜构筑纳米流体通道的研究进展[J]. 化工进展, 2022, 41(7): 3745-3757.
LI Peishan, ZHANG Mengchen, LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo. Nanofluidic channels based on two-dimensional material membranes[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3745-3757.
1 | XU Y. Nanofluidics: a new arena for materials science[J]. Advanced Materials, 2018, 30(3): 1702419. |
2 | SHEN J, LIU G P, HAN Y, et al. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nature Reviews Materials, 2021, 6(4): 294-312. |
3 | 刘菲菲, 王琛, 夏兴华. 仿生纳米通道的制备、修饰及生物分析应用[J]. 中国科学: 化学, 2020, 50(8): 867-881. |
LIU Feifei, WANG Chen, XIA Xinghua. Bio-inspired nanochannels: fabrication, modification and bioanalytical applications[J]. Scientia Sinica (Chimica), 2020, 50(8): 867-881. | |
4 | 李华鑫, 陈俊勇, 肖洲, 等. 纳米材料形貌和性能调控的仿生自组装研究进展[J]. 无机材料学报, 2021, 36(7): 695-710. |
LI Huaxin, CHEN Junyong, XIAO Zhou, et al. Research progress on biomimetic self-assembly of nanomaterials in morphology and performance control[J]. Journal of Inorganic Materials, 2021, 36(7): 695-710. | |
5 | CHENG Long, LIU Gongping, JIN Wanqin. Recent progress in two-dimensional-material membranes for gas separation[J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1090-1098. |
6 | 孔玥, 黄燕山, 罗宇, 等. 石墨烯基复合材料在新能源转换与存储领域的应用现状、关键问题及展望[J]. 化工进展, 2021, 40(9): 5118-5131. |
KONG Yue, HUANG Yanshan, LUO Yu, et al. Application status, key issues and prospects of graphene-based composite materials in the field of new energy conversion and storage industry[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5118-5131. | |
7 | 高凯华, 茆羊羊, 刘公平, 等. 疏水石墨烯膜的制备及其用于膜蒸馏脱盐的研究进展[J]. 化工进展, 2020, 39(6): 2135-2144. |
GAO Kaihua, MAO Yangyang, LIU Gongping, et al. Progresses in preparation of hydrophobic graphene-based membranes and their application for membrane distillation desalination[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2135-2144. | |
8 | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
9 | CAGLAR M, SILKINA I, BROWN B T, et al. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride[J]. ACS Nano, 2020, 14(3): 2729-2738. |
10 | WANG Y J, LI L B, WEI Y Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie International Edition, 2017, 129(31): 9102-9108. |
11 | 张建峰, 曹惠杨, 王红兵. 新型二维材料MXene的研究进展[J]. 无机材料学报, 2017, 32(6): 561-570. |
ZHANG Jianfeng, CAO Huiyang, WANG Hongbing. Research progress of novel two-dimensional material MXene[J]. Journal of Inorganic Materials, 2017, 32(6): 561-570. | |
12 | RIES L, PETIT E, MICHEL T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization[J]. Nature Materials, 2019, 18(10): 1112-1117. |
13 | LU P, LIU Y, ZHOU T T, et al. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations[J]. Journal of Membrane Science, 2018, 567: 89-103. |
14 | JIANG Z Y, LIU H L, AHMED S A, et al. Insight into ion transfer through the sub-nanometer channels in zeolitic imidazolate frameworks[J]. Angewandte Chemie International Edition, 2017, 56(17): 4767-4771. |
15 | 吕露茜, 赵娅俐, 魏嫣莹, 等. 二维金属-有机骨架膜的制备及其在分离中的应用[J]. 化学学报, 2021, 79(7): 869-884. |
Luqian LYU, ZHAO Yali, WEI Yanying, et al. Preparation of two-dimensional metal-organic framework membranes and their applications in separation[J]. Acta Chimica Sinica, 2021, 79(7): 869-884. | |
16 | KUEHL V A, YIN J S, DUONG P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[J]. Journal of the American Chemical Society, 2018, 140(51): 18200-18207. |
17 | 樊江, 汪唯, 蔡佳浩, 等. 二维膜的精密构筑和结构调控策略综述[J]. 化工进展, 2020, 39(12): 4823-4836. |
FAN Jiang, WANG Wei, CAI Jiahao, et al. A review of structural design and tuning methods of two-dimensional membranes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4823-4836. | |
18 | TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. |
19 | 朱宏伟, 王敏. 二维材料: 结构、制备与性能[J]. 硅酸盐学报, 2017, 45(8): 1043-1053. |
ZHU Hongwei, WANG Min. Two-dimensional materials: structure, preparation and properties[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1043-1053. | |
20 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
21 | NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. PNAS, 2005, 102(30): 10451-10453. |
22 | NICOLOSI V, CHHOWALLA M, KANATZIDIS M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419. |
23 | PATON K R, VARRLA E, BACKES C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624-630. |
24 | HUANG Y, SUTTER E, SHI N N, et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials[J]. ACS Nano, 2015, 9(11): 10612-10620. |
25 | YU J X, LI J, ZHANG W F, et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition[J]. Chemical Science, 2015, 6(12): 6705-6716. |
26 | 赵侦超, 张维萍. 二维层状分子筛前驱体的合成、改性及催化应用[J]. 物理化学学报, 2016, 32(10): 2475-2487. |
ZHAO Zhenchao, ZHANG Weiping. Two-dimensional layered zeolite precursors: syntheses, modifications and catalytic applications[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2475-2487. | |
27 | CHEN Y, GONG X L, GAI J G. Progress and challenges in transfer of large-area graphene films[J]. Advanced Science, 2016, 3(8): 1500343. |
28 | JEON M Y, KIM D, KUMAR P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. |
29 | MAKIURA R, MOTOYAMA S, UMEMURA Y, et al. Surface nano-architecture of a metal-organic framework[J]. Nature Materials, 2010, 9(7): 565-571. |
30 | MAHLER B, HOEPFNER V, LIAO K, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution[J]. Journal of the American Chemical Society, 2014, 136(40): 14121-14127. |
31 | RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
32 | FISCHBEIN M D, DRNDIĆ M. Electron beam nanosculpting of suspended graphene sheets[J]. Applied Physics Letters, 2008, 93(11): 113107. |
33 | CELEBI K, BUCHHEIM J, WYSS R M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science, 2014, 344(6181): 289-292. |
34 | SURWADE S P, SMIRNOV S N, VLASSIOUK I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 2015, 10(5): 459-464. |
35 | KOENIG S P, WANG L D, PELLEGRINO J, et al. Selective molecular sieving through porous graphene[J]. Nature Nanotechnology, 2012, 7(11): 728-732. |
36 | ZHANG L L, ZHAO X, STOLLER M D, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors[J]. Nano Letters, 2012, 12(4): 1806-1812. |
37 | WANG X L, JIAO L Y, SHENG K X, et al. Solution-processable graphene nanomeshes with controlled pore structures[J]. Scientific Reports, 2013, 3: 1996. |
38 | ZHOU D, CUI Y, XIAO P W, et al. A general and scalable synthesis approach to porous graphene[J]. Nature Communications, 2014, 5: 4716. |
39 | GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. |
40 | RADHA B, ESFANDIAR A, WANG F C, et al. Molecular transport through capillaries made with atomic-scale precision[J]. Nature, 2016, 538(7624): 222-225. |
41 | 阙海峰, 江华宁, 王兴国, 等. 二维材料范德华间隙的利用[J]. 物理化学学报, 2021, 37(11): 2010051. |
QUE Haifeng, JIANG Huaning, WANG Xingguo, et al. Utilization of the van der Waals gap of 2D materials[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 2010051. | |
42 | 赵梦尧, 杨雪平, 杨晓宁. 石墨烯狭缝受限孔道中水分子的分子动力学模拟[J]. 物理化学学报, 2015, 31(8): 1489-1498. |
ZHAO Mengyao, YANG Xueping, YANG Xiaoning. Molecular dynamics simulation of water molecules in confined slit pores of graphene[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1489-1498. | |
43 | 谭淼, 张磊, 梁万珍. 基于二维材料WX2构建的范德华异质结的结构和性质及应变效应的理论研究[J]. 物理化学学报, 2019, 35(4): 385-393. |
TAN Miao, ZHANG Lei, LIANG Wanzhen. Theoretical study on intrinsic structures and properties of vdW heterostructures of transition metal dichalcogenides(WX2) and effect of strains[J]. Acta Physico-Chimica Sinica, 2019, 35(4): 385-393. | |
44 | 李胄彦, 戴若彬, 李洋, 等. 基于二维纳米材料的水处理功能膜研究进展[J]. 化工进展, 2021, 40(8): 4117-4126. |
LI Zhouyan, DAI Ruobin, LI Yang, et al. Research progress of functional membranes based on two-dimensional nanomaterials for water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4117-4126. | |
45 | LIU Qiang, WANG Xiaoshan, WANG Jialiang, et al. Spatially controlled two-dimensional heterostructures via solution-phase growth[J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1099-1111. |
46 | TSOU C H, AN Q F, LO S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100. |
47 | KIM H W, YOON H W, YOON S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95. |
48 | AKBARI A, SHEATH P, MARTIN S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Communications, 2016, 7: 10891. |
49 | ZHONG J, SUN W, WEI Q W, et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances[J]. Nature Communications, 2018, 9: 3484. |
50 | DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457-460. |
51 | XU W L, FANG C, ZHOU F, et al. Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification[J]. Nano Letters, 2017, 17(5): 2928-2933. |
52 | ZHANG M C, SUN J J, MAO Y Y, et al. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes[J]. Journal of Membrane Science, 2019, 574: 196-204. |
53 | GUAN K C, SHEN J, LIU G P, et al. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport[J]. Separation and Purification Technology, 2017, 174: 126-135. |
54 | 刘露月, 吕荥宾, 刘壮, 等. 层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展[J]. 膜科学与技术, 2020, 40(1): 228-239. |
LIU Luyue, Xingbin LYU, LIU Zhuang, et al. Research progress on the stability improvement and interlayer-spacing regulation of graphene-based membranes with laminar structures[J]. Membrane Science and Technology, 2020, 40(1): 228-239. | |
55 | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. |
56 | CHEN L, SHI G S, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. |
57 | HUNG W S, TSOU C H, DE GUZMAN M, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing[J]. Chemistry of Materials, 2014, 26(9): 2983-2990. |
58 | ZHANG M C, MAO Y Y, LIU G Z, et al. Molecular bridges stabilize graphene oxide membranes in water[J]. Angewandte Chemie International Edition, 2020, 59(4): 1689-1695. |
59 | ZHAO J, ZHU Y W, PAN F S, et al. Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions[J]. Journal of Membrane Science, 2015, 487: 162-172. |
60 | HAN Y, JIANG Y, GAO C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8147-8155. |
61 | ZHANG M C, GUAN K C, SHEN J, et al. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity[J]. AIChE Journal, 2017, 63(11): 5054-5063. |
62 | SUI X, YUAN Z W, LIU C, et al. Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane[J]. Journal of Materials Chemistry A, 2020, 8(19): 9713-9725. |
63 | MAO Y Y, ZHANG M C, CHENG L, et al. Bola-amphiphile-imidazole embedded GO membrane with enhanced solvent dehydration properties[J]. Journal of Membrane Science, 2020, 595: 117545. |
64 | ZHANG W H, YIN M J, ZHAO Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology, 2021, 16(3): 337-343. |
65 | WANG Z, TU Q, ZHENG S, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298. |
66 | WANG J, ZHANG Z J, ZHU J N, et al. Ion sieving by a two-dimensional Ti3C2T x alginate lamellar membrane with stable interlayer spacing[J]. Nature Communications, 2020, 11: 3540. |
67 | RAN J, PAN T, WU Y Y, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers[J]. Angewandte Chemie International Edition, 2019, 131(46): 16615-16620. |
68 | YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202. |
69 | COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608. |
70 | YANG Y, YANG X, LIANG L, et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science, 2019, 364(6445): 1057-1062. |
71 | NIE L N, GOH K, WANG Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Science Advances, 2020, 6(17): eaaz9184. |
72 | YING Y L, SUN L W, WANG Q, et al. In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation[J]. RSC Advances, 2014, 4(41): 21425. |
73 | LI Y, ZHAO W, WEYLAND M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination[J]. Environmental Science & Technology, 2019, 53(14): 8314-8323. |
74 | SHINDE D B, SHENG G, LI X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2018, 140(43): 14342-14349. |
75 | ZHANG L Y, ZHANG M C, LIU G P, et al. Fungal cell wall-graphene oxide microcomposite membrane for organic solvent nanofiltration[J]. Advanced Functional Materials, 2021, 31(23): 2100110. |
76 | SARASWAT V, JACOBBERGER R M, OSTRANDER J S, et al. Invariance of water permeance through size-differentiated graphene oxide laminates[J]. ACS Nano, 2018, 12(8): 7855-7865. |
77 | KANG Y, QIU R S, JIAN M P, et al. The role of nanowrinkles in mass transport across graphene-based membranes[J]. Advanced Functional Materials, 2020, 30(32): 2003159. |
78 | HUANG H B, SONG Z G, WEI N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes[J]. Nature Communications, 2013, 4: 2979. |
79 | SUN L, YING Y, HUANG H, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes[J]. ACS Nano, 2014, 8(6): 6304-6311. |
80 | WEI N, PENG X, XU Z. Understanding water permeation in graphene oxide membranes[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5877-5883. |
81 | LIANG F, LIU Q, ZHAO J, et al. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters[J]. AIChE Journal, 2020, 66(2): e16812. |
82 | ZHANG M, ZHAO P, LI P, et al. Designing biomimic two-dimensional ionic transport channels for efficient ion sieving[J]. ACS Nano, 2021, 15(3): 5209-5220. |
83 | WU X L, CUI X L, WU W J, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18524-18529. |
84 | SUN P, ZHENG F, ZHU M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions[J]. ACS Nano, 2014, 8(1): 850-859. |
85 | DAI L H, XU F, HUANG K, et al. Ultrafast water transport in two-dimensional channels enabled by spherical polyelectrolyte brushes with controllable flexibility[J]. Angewandte Chemie International Edition, 2021, 133(36): 20086-20094. |
86 | GUAN K C, LIU Q, JI Y F, et al. Precisely controlling nanochannels of graphene oxide membranes through lignin-based cation decoration for dehydration of biofuels[J]. ChemSusChem, 2018, 11(14): 2315-2320. |
87 | 黄清波, 刘公平, 金万勤. 一/二价离子分离膜材料研究进展[J]. 化工学报, 2021, 72(1): 334-350. |
HUANG Qingbo, LIU Gongping, JIN Wanqin. Recent progress of membrane materials for mono-/di-valent ions separation[J]. CIESC Journal, 2021, 72(1): 334-350. | |
88 | 孙成珍, 周润峰, 白博峰. 基于静电效应的石墨烯纳米孔选择性渗透特性[J]. 物理化学学报, 2020, 36(11): 159-165. |
SUN Chengzhen, ZHOU Runfeng, BAI Bofeng. Electrostatic effect-based selective permeation characteristics of graphene nanopores[J]. Acta Physico-Chimica Sinica, 2020, 36(11): 159-165. | |
89 | HONG S, CONSTANS C, SURMANI MARTINS M V, et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity[J]. Nano Letters, 2017, 17(2): 728-732. |
90 | ZHANG M C, GUAN K C, JI Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10(1): 1253. |
91 | 辛伟闻, 闻利平. 二维材料用于渗透能转换的研究进展[J]. 高等学校化学学报, 2021, 42(2): 445-455. |
XIN Weiwen, WEN Liping. Two-dimensional materials for osmotic energy conversion[J]. Chemical Journal of Chinese Universities, 2021, 42(2): 445-455. | |
92 | GUO W, CHENG C, WU Y Z, et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane[J]. Advanced Materials, 2013, 25(42): 6064-6068. |
93 | JI J Z, KANG Q, ZHOU Y, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs[J]. Advanced Functional Materials, 2017, 27(2): 1603623. |
94 | DING L, XIAO D, LU Z, et al. Oppositely charged Ti3C2T x MXene membranes with 2D nanofluidic channels for osmotic energy harvesting[J]. Angewandte Chemie International Edition, 2020, 59(22): 8720-8726. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
[3] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[4] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[5] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[6] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[7] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[8] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[9] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[10] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[11] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[12] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[13] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[14] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[15] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |