化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1760-1768.DOI: 10.16085/j.issn.1000-6613.2022-1183
收稿日期:
2022-06-24
修回日期:
2022-09-27
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
张文龙
作者简介:
于捷(1993—),女,博士,研究方向为化学。E-mail:jieyu_@fudan.edu.cn。
Received:
2022-06-24
Revised:
2022-09-27
Online:
2023-04-25
Published:
2023-05-08
Contact:
ZHANG Wenlong
摘要:
锂电池隔膜是锂离子电池的重要组成部分,对整个电池的安全及性能有显著影响。目前国内国产化步伐加快,在锂电池隔膜方面已有明显的成果进步,市场占有率和产能都位居世界前列,但高端隔膜市场却依旧被国外公司垄断,因此,为进一步提高高端化市场的国产化率,仍需加大锂电隔膜的研究力度。本文主要针对电池隔膜在电池中的主要作用、种类、性能差异及优缺点,详细阐述了相应的国内外研究和进展,同时还概括了锂电池隔膜的制备工艺方法等,包括湿法和干法制备工艺。对隔膜的种类以及不同的改性方法进行了概述,包括不同改性方法导致的隔膜性能上的差异,并以几种商业隔膜和纤维素纸基隔膜为例,进行了性能对比。最后对锂电池隔膜在工艺、新型锂电池隔膜发展以及研究方向等方面的未来发展趋势进行了总结展望。
中图分类号:
于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768.
YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768.
项目 | Celgard 2320 | Celgard 2325 | Celgard 2340 | Celgard 2400 | Celgard 2500 | Celgard 2730 |
---|---|---|---|---|---|---|
材料 | PP/PE/PP | PP/PE/PP | PP/PE/PP | PP | PP | PE |
厚度/µm | 20 | 25 | 38 | 25 | 25 | 20 |
透气度/s·(100mL)-1 | 530 | 575 | 775 | 620 | 200 | |
孔径/nm | d=27 | 90×4 | 38×900 | d=43 | 210×50 | |
孔隙率/% | 41 | 41 | 45 | 41 | 55 | 43 |
穿刺强度(钢针直1mm)/gf | 360 | 375 | 450 | >335 | ||
纵向拉伸强度/MPa | 190 | 210 | ||||
横向拉伸强度/MPa | 13.5 | 13 | ||||
参考文献 | [ | [ | [ | [ | [ | [ |
表1 Celgard公司几种商业隔膜物理性能
项目 | Celgard 2320 | Celgard 2325 | Celgard 2340 | Celgard 2400 | Celgard 2500 | Celgard 2730 |
---|---|---|---|---|---|---|
材料 | PP/PE/PP | PP/PE/PP | PP/PE/PP | PP | PP | PE |
厚度/µm | 20 | 25 | 38 | 25 | 25 | 20 |
透气度/s·(100mL)-1 | 530 | 575 | 775 | 620 | 200 | |
孔径/nm | d=27 | 90×4 | 38×900 | d=43 | 210×50 | |
孔隙率/% | 41 | 41 | 45 | 41 | 55 | 43 |
穿刺强度(钢针直1mm)/gf | 360 | 375 | 450 | >335 | ||
纵向拉伸强度/MPa | 190 | 210 | ||||
横向拉伸强度/MPa | 13.5 | 13 | ||||
参考文献 | [ | [ | [ | [ | [ | [ |
项目 | 纤维素隔膜 | CC隔膜 | 纤维素/PSA隔膜 | MFC3隔膜 | CCP-20 | BC/Al2O3隔膜 |
---|---|---|---|---|---|---|
材料 | 棉浆 | 刚毛藻纤维粉末 | 棉浆、芳砜纶浆粕 | 纤维素微纤丝、Al2O3粉末 | 漂白硫酸盐桉木浆、 商业纤维素隔膜 | 细菌纤维素膜、 九水合硝酸铝 |
厚度/µm | 40 | 35 | 40 | 25 | 35 | 30 |
电解液吸收率/% | 275 | 260 | 136.4 | 625 | ||
热收缩率/% | 0(200℃) | 0(150℃, 30min) | 0(200℃, 30min) | <1(30~180℃) | 0(100~150℃) | 0(180℃, 30min) |
孔隙率/% | 70 | 46 | 66 | 54 | 74.7 | |
离子电导率/mS·cm-1 | 1.08 | 0.4 | 1.20 | 1.06 | 0.71 | 4.91 |
拉伸强度/MPa | 15 | 61 | 17 | 12.2 | 49 | 140 |
参考文献 | [ | [ | [ | [ | [ | [ |
表2 纤维素纸基隔膜性能对比
项目 | 纤维素隔膜 | CC隔膜 | 纤维素/PSA隔膜 | MFC3隔膜 | CCP-20 | BC/Al2O3隔膜 |
---|---|---|---|---|---|---|
材料 | 棉浆 | 刚毛藻纤维粉末 | 棉浆、芳砜纶浆粕 | 纤维素微纤丝、Al2O3粉末 | 漂白硫酸盐桉木浆、 商业纤维素隔膜 | 细菌纤维素膜、 九水合硝酸铝 |
厚度/µm | 40 | 35 | 40 | 25 | 35 | 30 |
电解液吸收率/% | 275 | 260 | 136.4 | 625 | ||
热收缩率/% | 0(200℃) | 0(150℃, 30min) | 0(200℃, 30min) | <1(30~180℃) | 0(100~150℃) | 0(180℃, 30min) |
孔隙率/% | 70 | 46 | 66 | 54 | 74.7 | |
离子电导率/mS·cm-1 | 1.08 | 0.4 | 1.20 | 1.06 | 0.71 | 4.91 |
拉伸强度/MPa | 15 | 61 | 17 | 12.2 | 49 | 140 |
参考文献 | [ | [ | [ | [ | [ | [ |
指标名称 | 聚酰亚胺隔膜 | PP/PE/PP三层隔膜 |
---|---|---|
介电常数 | 3.4 | 2.2 |
介质损耗因数 | 10-3 | 10-2 |
透气性/mL·in-2 | >140 | >140 |
孔隙率/% | 90 | 42 |
溶解温度/℃ | >500 | 175 |
纵向热收缩率/% | 0 (350℃) | 0.08 (85℃) |
横向热收缩率/% | 0 (350℃) | 0.08 (85℃) |
耐压值/kV·mm-1 | 100~300 | 0.4 |
穿刺强度/gf | >2.5 | >2.5 |
表3 聚酰亚胺隔膜与PP/PE/PP复合隔膜性能对比
指标名称 | 聚酰亚胺隔膜 | PP/PE/PP三层隔膜 |
---|---|---|
介电常数 | 3.4 | 2.2 |
介质损耗因数 | 10-3 | 10-2 |
透气性/mL·in-2 | >140 | >140 |
孔隙率/% | 90 | 42 |
溶解温度/℃ | >500 | 175 |
纵向热收缩率/% | 0 (350℃) | 0.08 (85℃) |
横向热收缩率/% | 0 (350℃) | 0.08 (85℃) |
耐压值/kV·mm-1 | 100~300 | 0.4 |
穿刺强度/gf | >2.5 | >2.5 |
1 | 巫晓鑫, 吴水珠, 赵建青, 等. 锂离子电池聚烯烃隔膜改性及功能化研究[J]. 合成材料老化与应用, 2012, 41(4): 43-48. |
WU Xiaoxing, WU Shuizhu, ZHAO Jianqing, et al. Study on modification and functionalization for lithium-ion battery polyolefin separator[J]. Synthetic Materials Aging and Application, 2012, 41(4): 43-48. | |
2 | LI Y Q, YU L, HU W R, et al. Thermotolerant separators for safe lithium-ion batteries under extreme conditions[J]. Journal of Materials Chemistry A, 2020, 8(39): 20294-20317. |
3 | LIU X, REN D S, HSU H J, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2: 2047-2064. |
4 | LYU P Z, LIU X J, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31: 195-220. |
5 | 李翔. 锂电池产品质量安全监测及数据管理技术研究[D]. 天津: 天津大学, 2014. |
LI Xiang. Research on quality and safety monitoring and data management technology of lithium battery products[D]. Tianjin: Tianjin University, 2014. | |
6 | 孙美玲, 唐浩林, 潘牧. 动力锂离子电池隔膜的研究进展[J]. 材料导报, 2011, 25(5): 44-50. |
SUN Meiling, TANG Haolin, PAN Mu. A review on the separators of power Li-ion batteries[J]. Materials Review, 2011, 25(5): 44-50. | |
7 | PARK J, GWON S, LIM Y. Influence of the stretching temperature on an alumina filled microporous high density polyethylene membrane[J]. Materials & Design, 2010, 31(7): 3215-3219. |
8 | 周飞. 锂离子电池材料开发技术研究[J]. 武汉船舶职业技术学院学报, 2016, 15(4): 38-42. |
ZHOU Fei. Research on material technology development of lithium ion battery[J]. Journal of Wuhan Institute of Shipbuilding Technology, 2016, 15(4): 38-42. | |
9 | 吴银财. TIPS法制备锂离子电池用聚烯烃共混微孔膜及其性能研究[D]. 南京: 南京航空航天大学, 2014. |
WU Yincai. Study on the performance of polyolefin microporous membrane for lithium-ion battery prepared by TIPS method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. | |
10 | WU X L, JIANG L Y, CAO F F, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices[J]. Advanced Materials, 2009, 21(25/26): 2710-2714. |
11 | GUAN X Z, WANG A X, LIU S, et al. Controlling nucleation in lithium metal anodes[J]. Small, 2018, 14(37): 1801423. |
12 | 伊廷锋, 胡信国, 高昆. 锂离子电池隔膜的研究和发展现状[J]. 电池, 2005, 35(6): 468-470. |
YIN Tingfeng, HU Xinguo, GAO Kun. Research and development status of separators for Li-ion batteries[J]. Battery Bimonthly, 2005, 35(6): 468-470. | |
13 | 朱宝库, 李浩, 石俊黎, 等. 锂离子电池隔膜的制备及高性能化[C]//第一届全国储能科学与技术大会摘要集, 2014. |
ZHU Baoku, LI Hao, SHI Junli,et al. Preparation and high performance of lithium ion battery separator[C]// Abstracts of the 1st China Conference on Energy Storage Science and Technology, 2014. | |
14 | PATIL A, PATIL V, SHIN D W. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8/9): 1913-1942. |
15 | 马留可, 马小路, 陈成, 等. 动力锂离子电池用聚烯烃隔膜改性研究进展[J]. 电源技术, 2018, 42(3): 452-454. |
MA Liuke, MA Xiaolu, CHEN Cheng, et al. Research progress of modification of polyolefin separators for power lithium ion battery[J]. Chinese Journal of Power Sources, 2018, 42(3): 452-454. | |
16 | LU W J, YUAN Z Z, ZHAO Y Y, et al. Porous membranes in secondary battery technologies[J]. Chemical Society Reviews, 2017, 46(8): 2199-2236. |
17 | HE M N, ZHANG X J, JIANG K Y, et al. Pure inorganic separator for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 738-742. |
18 | WANG Y R, YANG Y F, YANG Y B, et al. Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material prepared by solvothermal method[J]. Solid State Communications, 2010, 150(1/2): 81-85. |
19 | 雷鸣, 陈琳. 关于GIL和GIS母线产品基本结构尺寸设计探讨[J]. 高压电器, 2013, 49(4): 128-133. |
LEI Ming, CHEN Lin. Discusses on basic structure design of GIL and GIS busbar[J]. High Voltage Apparatus, 2013, 49(4): 128-133. | |
20 | JEONG H S, LEE S Y. Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6716-6722. |
21 | JEON H, YEON D, LEE T, et al. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries[J]. Journal of Power Sources, 2016, 315: 161-168. |
22 | LEE H, PARK S H, PARK Y K, et al. Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma[J]. Chemistry Central Journal, 2013, 7(1): 156. |
23 | 廖祥军. 聚偏氟乙烯(PVDF)膜改性特征及其应用研究[D]. 太原: 山西大学, 2019. |
LIAO Xiangjun. Study on modification characteristics and application of polyvinylidene fluoride (PVDF) membranes[D]. Taiyuan: Shanxi University, 2019. | |
24 | YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2 cycled above 4.2 V[J]. ACS Energy Letters, 2017, 2(5): 1150-1155. |
25 | SHI C, ZHANG P, CHEN L X, et al. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries[J]. Journal of Power Sources, 2014, 270: 547-553. |
26 | ARORA P, ZHANG Z. Battery separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462. |
27 | LOVE C T. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators[J]. Journal of Power Sources, 2011, 196 (5): 2905-2912. |
28 | ZHANG S S. A review on the separators of liquid electrolyte Li-ion batteries[J]. Journal of Power Sources, 2007, 164(1): 351-364. |
29 | WANG E, CHIU C H, CHOU P H. Safety assessment of polyolefin and nonwoven separators used in lithium-ion batteries[J]. Journal of Power Sources, 2020, 461: 228148. |
30 | ARORA P, ZHANG Z M. Battery separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462. |
31 | 孟庆朋. 聚偏氟乙烯基锂离子电池隔膜的改性及其性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. |
MENG Qingpeng. Modification and performance of polyvinylidene fluoride based lithium ion battery separator[D]. Harbin: Harbin University of Science and Technology, 2019. | |
32 | LI H, CHEN Y M, MA X T, et al. Gel polymer electrolytes based on active PVDF separator for lithium ion battery (Ⅰ): Preparation and property of PVDF/poly(dimethylsiloxane) blending membrane[J]. Journal of Membrane Science, 2011, 379(1/2): 397-402. |
33 | ALCOUTLABI M, LEE H, WATSON J V, et al. Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning[J]. Journal of Materials Science, 2013, 48(6): 2690-2700. |
34 | 刘久清, 何俊颖. 一种锂离子电池隔膜的制备方法: CN105118950A[P]. 2015-12-02. |
LIU Jiouqing, HE Junying. A preparation method of lithium ion battery separator: CN105118950A[P]. 2015-12-02. | |
35 | 张纪娟, 孙中华, 高珊珊, 等. 纤维素基材料在锂电池中的应用研究进展[J]. 造纸科学与技术, 2016, 35(2): 24-28. |
ZHANG Jijuan, SUN Zhonghua, GAO Shanshan, et al. Study on the application of cellulose based materials in lithium battery[J]. Paper Science & Technology, 2016, 35(2): 24-28. | |
36 | 杨桂花, 李伟栋, 和铭, 等. 纳米纤维素基气凝胶的制备及其吸附分离应用研究进展[J]. 中国造纸学报, 2021, 36(2): 87-96. |
YANG Guihua, LI Weidong, HE Ming, et al. Research progress on preparation of nanocellulose-based aerogel and its application in absorption and separation[J]. Transactions of China Pulp and Paper, 2021, 36(2): 87-96. | |
37 | 邵自强, 刘川渟, 王振华, 等. 一种新型纳米纤维素改良的锂离子电池隔膜及其制备方法: CN105720224A[P]. 2016-06-29. |
SHAO Ziqiang, LIU Chuanting, WANG Zhenhua, et al. A novel nano cellulose modified lithium ion battery diaphragm and its preparation method: CN105720224A[P]. 2016-06-29. | |
38 | LIU Y, HU C, WU J, et al. Carboxy cellulose as cathode interfacial layer for efficient organic solar cells [J]. Paper and Biomaterials, 2020, 5 (1): 14-21. |
39 | XU Q, KONG Q S, LIU Z H, et al. Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator[J]. RSC Advances, 2014, 4(16): 7845. |
40 | PAN R J, CHEUNG O, WANG Z, et al. Mesoporous cladophora cellulose separators for lithium-ion batteries[J]. Journal of Power Sources, 2016, 321: 185-192. |
41 | XU Q, KONG Q S, LIU Z H, et al. Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 194-199. |
42 | HUANG X S. Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process[J]. Journal of Power Sources, 2014, 256: 96-101. |
43 | LYU D, CHAI J, WANG P, et al. Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils [J]. Carbohydrate Polymers, 2021, 251: 116975. |
44 | XU Q, WEI C Z, FAN L L, et al. A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator[J]. Cellulose, 2017, 24(4): 1889-1899. |
45 | 何小芳, 韩雪鹏, 秦刚, 等. 聚酰亚胺(PI)锂电池隔膜材料的研究进展[J]. 塑料工业, 2016, 44(1): 1-4. |
HE Xiaofang, HAN Xuepeng, QIN Gang, et al. Research progress of polyimide diaphragm material for lithium ion battery[J]. China Plastics Industry, 2016, 44(1): 1-4. | |
46 | 朱雷鹤, 李祥. 浅析500kV瓶窑变GIL管道母线热伸缩问题及处理[J]. 浙江电力, 2006, 25(5): 49-51. |
ZHU Leihe, LI Xiang. Disposal method of GIL pipe bus thermal stretching in 500kV Pingyao substation[J]. Zhejiang Electric Power, 2006, 25(5): 49-51. | |
47 | SONG J, RYOU M H, SON B, et al. Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries[J]. Electrochimica Acta, 2012, 85: 524-530. |
48 | 齐胜利, 袁利娟, 龙娇秀, 等. 具有交联结构的聚酰亚胺纳米纤维膜的制备方法在锂电池隔膜中的应用: CN103474600A[P]. 2013-12-25. |
QI Shengli, YUAN Lijuan, LONG Jiaoxiu, et al. Preparation of polyimide nanofiber membrane with crosslinking structure and its application in lithium battery separator: CN103474600A[P]. 2013-12-25. | |
49 | 赵云腾, 刘太奇, 马福瑞, 等. 超高分子量聚乙烯锂电池隔膜的制备及其改性研究进展[J]. 新技术新工艺, 2015(12): 105-109. |
ZHAO Yunteng, LIU Taiqi, MA Furui, et al. Research progress in preparation and modification of UHMWPE lithium ion battery separator[J]. New Technology & New Process, 2015(12): 105-109. | |
50 | 赵智华, 李敏. 一种聚烯烃锂离子电池隔膜制备方法: CN103618055A[P]. 2014-03-05. |
ZHAO Zhihua, LI Min. A preparation method of polyolefin lithium ion battery diaphragm: CN103618055A[P]. 2014-03-05. | |
51 | KIM P J, POL V G. High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer[J]. Advanced Energy Materials, 2018, 8(36): 1802665. |
52 | DENG C, WANG Z W, WANG S P, et al. Double-layered modified separators as shuttle suppressing interlayers for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 541-549. |
53 | 鲁成明, 虞鑫海, 王丽华. 国内外锂离子电池隔膜的研究进展[J]. 电池工业, 2019, 23(2): 101-105. |
LU Chengming, YU Xinhai, WANG Lihua. Research progress of lithium ion battery separators at home and abroad[J]. Chinese Battery Industry, 2019, 23(2): 101-105. | |
54 | 徐京生. 锂离子电池隔膜现状及发展趋势[J]. 新材料产业, 2011(12): 17-21. |
XU Jingsheng. Present situation and development trend of lithium ion battery separator[J]. Advanced Materials Industry, 2011(12): 17-21. | |
55 | 于建香, 刘太奇. 静电纺丝法制备锂离子电池隔膜的研究进展[J]. 新技术新工艺, 2012(5): 61-64. |
YU Jianxiang, LIU Taiqi. Research development of electrospinning preparation of lithium ion battery septum[J]. New Technology & New Process, 2012(5): 61-64. | |
56 | 郭旭青, 杨璐, 李振虎, 等. 锂离子电池隔膜研究进展及市场现状[J]. 合成纤维, 2022, 51(7): 46-49. |
GUO Xuqing, YANG Lu, LI Zhenhu, et al. Research progress and market status of lithium-ion battery separator[J]. Synthetic Fiber in China, 2022, 51(7): 46-49. |
[1] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[2] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
[3] | 许德军, 钟本和, 张志业, 许德华, 王辛龙. 水溶性聚磷酸铵的制备及应用研究进展[J]. 化工进展, 2021, 40(1): 378-385. |
[4] | 何秋梅, 鲁忠臣, 曾美琴. 高能球磨法制备铈锆铝复合氧化物的工艺[J]. 化工进展, 2018, 37(10): 3958-3965. |
[5] | 李振昊,李文乐,孔繁华,阎立军,任春晓. 掺杂二氧化锡的应用研究进展 [J]. 化工进展, 2010, 29(12): 2324-. |
[6] | 欧育湘,孟 征,刘进全. 高能量密度化合物CL-20的合成和制备工艺进展 [J]. 化工进展, 2007, 26(6): 762-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |