化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2439-2453.DOI: 10.16085/j.issn.1000-6613.2022-1195
陈明星1,2(), 王新亚1,2, 张威1,2(), 肖长发3
收稿日期:
2022-06-27
修回日期:
2022-08-20
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
张威
作者简介:
陈明星(1986—),男,博士,研究方向为新型功能性纤维材料的制备及应用。E-mail:mxchen1990@163.com。
基金资助:
CHEN Mingxing1,2(), WANG Xinya1,2, ZHANG Wei1,2(), XIAO Changfa3
Received:
2022-06-27
Revised:
2022-08-20
Online:
2023-05-10
Published:
2023-06-02
Contact:
ZHANG Wei
摘要:
高温含尘废气的排放是造成环境污染的主要原因之一,纤维基空气过滤材料具有比表面积大、结构可控等一系列优点,在空气过滤领域备受关注。但普通纤维基空气过滤材料存在耐高温性能差的问题,为便于相关人员更好了解纤维基耐高温空气过滤材料的研究现状,本文对近年来纤维基耐高温非织造空气过滤材料的研究进展进行了综述。重点介绍了纤维基耐高温非织造空气过滤材料所用原料(有机纤维原料、无机纤维原料等),制备工艺(针刺、水刺、熔喷、静电纺、离心纺和气流纺等)及其功能化改性(脱硫、脱硝、脱VOCs等)应用。对耐高温非织造空气过滤材料制备和应用过程中存在的缺点进行了讨论,指出未来发展应以开发新材料、改进制备工艺和功能化改性为重点方向;以期为耐高温非织造空气过滤材料的研究提供一定参考,拓展纤维基耐高温空气过滤材料应用范围。
中图分类号:
陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453.
CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453.
纤维种类 | 分子结构式 | 热性能 | 其他特性 |
---|---|---|---|
间位芳纶(PMIA) | Td为400~430℃、可在200℃下长时间使用 | 阻燃、耐化学腐蚀(耐酸、不耐强碱)、耐辐射但不耐紫外光、尺寸稳定、可纺性好 | |
对位芳纶(PPTA) | Td约为560℃、可在-196~204℃下长时间使用 | 高抗拉强度和起始弹性模量、热收缩和蠕变性能稳定,高绝缘性和耐化学腐蚀性(除浓硫酸外,耐强酸强碱)、耐紫外性能差 | |
聚酰亚胺(PI) | Tg>280℃、杂环PI的Tg可超450℃、Td约为560℃,在300℃下可长期使用 | 高绝缘、耐低温、高强高模、耐酸碱性差、不耐水解、耐辐射、介电性能好、生物相容性好 | |
聚四氟乙烯(PTFE) | Td约为425℃,可在260℃下长期使用 | 表面光滑、摩擦系数小、耐化学腐蚀、耐强酸强碱、强度高、耐紫外光、阻燃 | |
聚苯硫醚(PPS) | Td大于400℃、可在180~200℃下长时间使用 | 耐化学腐蚀、蠕变量低、吸水率低、尺寸稳定性好、阻燃、耐碱、对强氧化性酸耐受性差、可纺性差、难溶解、耐紫外光性差 | |
聚芳硫醚砜(PASS) | Tg为215~226℃,热变形温度为190℃ | 尺寸稳定、耐化学腐蚀、阻燃和优良的电性能、可溶于特定溶剂、对浓硫酸耐受性差 | |
聚苯并咪唑(PBI) | Td大于500℃、可在300~370℃下长时间使用 | 阻燃、耐化学腐蚀、耐酸碱、高电绝缘,热收缩性能稳定、耐辐射 | |
聚醚醚酮(PEEK) | Tg约为143℃、Td大于520℃、可在260℃下长期使用 | 摩擦系数小、耐水解、耐疲劳、耐辐照、高电绝缘、尺寸稳定、热膨胀系数小、耐强酸强碱(浓硫酸除外) |
表1 空气过滤材料用耐高温有机纤维原料
纤维种类 | 分子结构式 | 热性能 | 其他特性 |
---|---|---|---|
间位芳纶(PMIA) | Td为400~430℃、可在200℃下长时间使用 | 阻燃、耐化学腐蚀(耐酸、不耐强碱)、耐辐射但不耐紫外光、尺寸稳定、可纺性好 | |
对位芳纶(PPTA) | Td约为560℃、可在-196~204℃下长时间使用 | 高抗拉强度和起始弹性模量、热收缩和蠕变性能稳定,高绝缘性和耐化学腐蚀性(除浓硫酸外,耐强酸强碱)、耐紫外性能差 | |
聚酰亚胺(PI) | Tg>280℃、杂环PI的Tg可超450℃、Td约为560℃,在300℃下可长期使用 | 高绝缘、耐低温、高强高模、耐酸碱性差、不耐水解、耐辐射、介电性能好、生物相容性好 | |
聚四氟乙烯(PTFE) | Td约为425℃,可在260℃下长期使用 | 表面光滑、摩擦系数小、耐化学腐蚀、耐强酸强碱、强度高、耐紫外光、阻燃 | |
聚苯硫醚(PPS) | Td大于400℃、可在180~200℃下长时间使用 | 耐化学腐蚀、蠕变量低、吸水率低、尺寸稳定性好、阻燃、耐碱、对强氧化性酸耐受性差、可纺性差、难溶解、耐紫外光性差 | |
聚芳硫醚砜(PASS) | Tg为215~226℃,热变形温度为190℃ | 尺寸稳定、耐化学腐蚀、阻燃和优良的电性能、可溶于特定溶剂、对浓硫酸耐受性差 | |
聚苯并咪唑(PBI) | Td大于500℃、可在300~370℃下长时间使用 | 阻燃、耐化学腐蚀、耐酸碱、高电绝缘,热收缩性能稳定、耐辐射 | |
聚醚醚酮(PEEK) | Tg约为143℃、Td大于520℃、可在260℃下长期使用 | 摩擦系数小、耐水解、耐疲劳、耐辐照、高电绝缘、尺寸稳定、热膨胀系数小、耐强酸强碱(浓硫酸除外) |
制备方法 | 工艺特点 | 滤材特点 |
---|---|---|
针刺 | 适用原料广泛、有机无机纤维皆可、可加工滤材面密度范围广,对纤维损伤大 | 孔径大、孔隙率低、强度好 |
水刺 | 适用原料广泛、有机无机纤维皆可、对纤维损伤小,适于加工低面密度滤材 | 孔径较小、孔隙率降低、透气性能较好,纤维间结合相对差、强度稍差 |
熔喷 | 工艺流程短、生产效率高,适用原料少、耗能高 | 孔径较小、孔隙率较高,强度相对较低 |
静电纺丝 | 适用原料广泛、纤维直径细且均匀可控、可制备不同结构的纳米纤维、接收装置多样化、易于功能化、已工业化,需要高压电源、生产效率低 | 形貌均匀、孔径小、孔隙率高、孔结构均匀,强度差 |
离心纺丝 | 适用原料广泛、无需高压电源、生产效率高,纤维直径相比静电纺大、难以制备异形结构纳米纤维 | 孔径小、孔隙率高,形态单一、强度差 |
气流纺丝 | 适用原料广泛、无需高压电源、生产效率高、可与静电纺丝结合,纤维形态可控性较差 | 孔径小、孔隙率高,孔结构均一性差、强度差 |
表2 纤维基空气过滤材料制备方法
制备方法 | 工艺特点 | 滤材特点 |
---|---|---|
针刺 | 适用原料广泛、有机无机纤维皆可、可加工滤材面密度范围广,对纤维损伤大 | 孔径大、孔隙率低、强度好 |
水刺 | 适用原料广泛、有机无机纤维皆可、对纤维损伤小,适于加工低面密度滤材 | 孔径较小、孔隙率降低、透气性能较好,纤维间结合相对差、强度稍差 |
熔喷 | 工艺流程短、生产效率高,适用原料少、耗能高 | 孔径较小、孔隙率较高,强度相对较低 |
静电纺丝 | 适用原料广泛、纤维直径细且均匀可控、可制备不同结构的纳米纤维、接收装置多样化、易于功能化、已工业化,需要高压电源、生产效率低 | 形貌均匀、孔径小、孔隙率高、孔结构均匀,强度差 |
离心纺丝 | 适用原料广泛、无需高压电源、生产效率高,纤维直径相比静电纺大、难以制备异形结构纳米纤维 | 孔径小、孔隙率高,形态单一、强度差 |
气流纺丝 | 适用原料广泛、无需高压电源、生产效率高、可与静电纺丝结合,纤维形态可控性较差 | 孔径小、孔隙率高,孔结构均一性差、强度差 |
基材 | 功能性物质 | 功能性 | 特性 | 参考文献 |
---|---|---|---|---|
PPS针刺纤维毡 | MnO2 | 脱硝 | 对4μm以上颗粒物过滤效率接近100%;当NH3/NO的流速为140mL/min时,在200℃下,对NO的转化率接近85% | [ |
SiO2纳米纤维膜 | Co3O4-C | 在1.1cm/s的流速下,对PM2.5的过滤效率达99.99%,过滤阻力仅58Pa;当NH3/NO的流速为200mL/min时,在245℃下,对1224.5mg/m3 NO的转化率为91.7% | [ | |
PAN纳米纤维膜 | MIL-53 | 脱硫 | 在3.98cm/s的流速下,对PM0.3的过滤效率达99%,过滤阻力仅30.5Pa;当气体流速为700mL/min时,纳米纤维膜对浓度为19.1mg/m3 SiO2气体的吸附量为2.8mg/g | [ |
PTFE滤膜 | UiO-66-NH2、CNT | 在3.3cm/s的流速下,对PM0.3的过滤效率达99.997%,过滤阻力约为160Pa;当气体流速为0.12cm/s,SiO2浓度为78.4mg/m3时,纳米纤维膜对SiO2的吸附量为38.4mg/g | [ | |
PTFE滤膜 | Ag/ZnO | 脱VOCs | 当气体流速为0.5cm/s,甲醛体积分数为0.2%时,纳米纤维膜对甲醛的去除率约为60%;在动态抗菌实验中,抑菌率达99.5% | [ |
PAN纳米纤维膜 | TiO2 | 在5.3cm/s的流速下,对质量中位直径为0.26μm颗粒物过滤效率为89%,过滤阻力为85Pa;对初始浓度为325mg/m3±50mg/m3甲苯的转化率为78.6% | [ | |
SiO2/PTFE纳米纤维膜 | ZnO | 抗菌 | 在1.7cm/s的流速下,对平均直径为0.3μm颗粒物的过滤效率达99.99%,过滤阻力约为1530Pa;对大肠杆菌的抑菌率可达99.67%,对枯草芽孢杆菌抑菌率可达99.93% | [ |
PPS纤维滤材 | Mn-Ce-Fe-Co-O x | 脱汞 | 当气体流速为1.7cm/s,Hg0初始浓度为45μg/m3±0.1μg/m3时,对Hg0的转化率高于93.2% | [ |
Al2O3纳米纤维膜 | Pt | 脱CO | 在5cm/s的流速下,对质量中位直径为0.3μm颗粒物过滤效率为99.986%,过滤阻力约为339.4Pa;在242℃和60mL/min流速下,对混合气体中体积分数1% CO的催化转化效率接近100% | [ |
表3 纤维基空气过滤材料功能化改性
基材 | 功能性物质 | 功能性 | 特性 | 参考文献 |
---|---|---|---|---|
PPS针刺纤维毡 | MnO2 | 脱硝 | 对4μm以上颗粒物过滤效率接近100%;当NH3/NO的流速为140mL/min时,在200℃下,对NO的转化率接近85% | [ |
SiO2纳米纤维膜 | Co3O4-C | 在1.1cm/s的流速下,对PM2.5的过滤效率达99.99%,过滤阻力仅58Pa;当NH3/NO的流速为200mL/min时,在245℃下,对1224.5mg/m3 NO的转化率为91.7% | [ | |
PAN纳米纤维膜 | MIL-53 | 脱硫 | 在3.98cm/s的流速下,对PM0.3的过滤效率达99%,过滤阻力仅30.5Pa;当气体流速为700mL/min时,纳米纤维膜对浓度为19.1mg/m3 SiO2气体的吸附量为2.8mg/g | [ |
PTFE滤膜 | UiO-66-NH2、CNT | 在3.3cm/s的流速下,对PM0.3的过滤效率达99.997%,过滤阻力约为160Pa;当气体流速为0.12cm/s,SiO2浓度为78.4mg/m3时,纳米纤维膜对SiO2的吸附量为38.4mg/g | [ | |
PTFE滤膜 | Ag/ZnO | 脱VOCs | 当气体流速为0.5cm/s,甲醛体积分数为0.2%时,纳米纤维膜对甲醛的去除率约为60%;在动态抗菌实验中,抑菌率达99.5% | [ |
PAN纳米纤维膜 | TiO2 | 在5.3cm/s的流速下,对质量中位直径为0.26μm颗粒物过滤效率为89%,过滤阻力为85Pa;对初始浓度为325mg/m3±50mg/m3甲苯的转化率为78.6% | [ | |
SiO2/PTFE纳米纤维膜 | ZnO | 抗菌 | 在1.7cm/s的流速下,对平均直径为0.3μm颗粒物的过滤效率达99.99%,过滤阻力约为1530Pa;对大肠杆菌的抑菌率可达99.67%,对枯草芽孢杆菌抑菌率可达99.93% | [ |
PPS纤维滤材 | Mn-Ce-Fe-Co-O x | 脱汞 | 当气体流速为1.7cm/s,Hg0初始浓度为45μg/m3±0.1μg/m3时,对Hg0的转化率高于93.2% | [ |
Al2O3纳米纤维膜 | Pt | 脱CO | 在5cm/s的流速下,对质量中位直径为0.3μm颗粒物过滤效率为99.986%,过滤阻力约为339.4Pa;在242℃和60mL/min流速下,对混合气体中体积分数1% CO的催化转化效率接近100% | [ |
1 | LAKSHMANAN A, SARNGAN P P, SARKAR D. Inorganic-organic nanofiber networks with antibacteria properties for enhanced particulate filtration: The critical role of amorphous titania[J]. Chemosphere, 2022, 286(Pt 2): 131671. |
2 | ZHOU Mengjuan, HU Min, QUAN Zhenzhen, et al. Polyacrylonitrile/polyimide composite sub-micro fibrous membranes for precise filtration of PM0.26 pollutants[J]. Journal of Colloid and Interface Science, 2020, 578: 195-206. |
3 | State of Global Air 2020[EB/OL]. . |
4 | 徐泽丰, 崔荣, 金江. 超高温烟尘过滤陶瓷滤料的制备[J]. 环境工程学报, 2016, 10(4): 1951-1955. |
XU Zefeng, CUI Rong, JIN Jiang. Preparation of ceramic filter for gas filtration at ultra-high temperatures[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1951-1955. | |
5 | 王亚芳. 静电纺丝法构筑聚酰亚胺基高温空气过滤材料及其性能研究[D]. 西安: 陕西科技大学, 2021. |
WANG Yafang. Study on the construction and property of polyimide-based filters for high temperature air pollution control via electrospinning[D]. Xi’an: Shaanxi University of Science & Technology, 2021. | |
6 | WANG Chiu-sen, OTANI Y. Removal of nanoparticles from gas streams by fibrous filters: A review[J]. Industrial & Engineering Chemistry Research, 2013, 52(1): 5-17. |
7 | 付群飞, 房杰, 时杰, 等. 纤维种类对纤维束过滤器除尘性能的影响[J]. 环境工程学报, 2019, 13(3): 701-707. |
FU Qunfei, FANG Jie, SHI Jie, et al. Effect of fiber type on dust removal performance of fiber bundle filters[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 701-707. | |
8 | KADAM V V, WANG Lijing, PADHYE R. Electrospun nanofibre materials to filter air pollutants—A review[J]. Journal of Industrial Textiles, 2018, 47(8): 2253-2280. |
9 | ROBERT B, NALLATHAMBI G. A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air[J]. Colloid and Interface Science Communications, 2020, 37: 100275. |
10 | 赖星, 王纯, 肖长发, 等. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179. |
LAI Xing, WANG Chun, XIAO Changfa, et al. Progress in preparation and application of aromatic polyamide separation membrane[J]. Journal of Textile Research, 2021, 42(10): 172-179. | |
11 | 魏恋璎, 陈明星, 张威, 等. 芳香聚酰胺材料在膜分离领域应用研究进展[J]. 膜科学与技术, 2022, 42(1): 155-169. |
WEI Lianying, CHEN Mingxing, ZHANG Wei, et al. The progress of aromatic polyamide materials in the application of membrane separation[J]. Membrane Science and Technology, 2022, 42(1): 155-169. | |
12 | ZHANG Hongnan, XIE Yongxin, SONG Yan, et al. Preparation of high-temperature resistant poly(m-phenylene isophthalamide)/polyacrylonitrile composite nanofibers membrane for air filtration[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126831. |
13 | TENG Cuiqing, LI Hui, LIU Jing, et al. Effect of high molecular weight PPTA on liquid crystalline phase and spinning process of aramid fibers[J]. Polymers, 2020, 12(5): 1206. |
14 | XU Kangli, ZHAN Lei, YAN Rui, et al. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven[J]. Nanoscale, 2022, 14(2): 419-427. |
15 | LI Yajian, MING Jinfa, YUAN Ding, et al. High-temperature bearable polysulfonamide/polyurethane composite nanofibers’ membranes for filtration application[J]. Macromolecular Materials and Engineering, 2021, 306(7): 2100081. |
16 | DING Yichun, HOU Haoqing, ZHAO Yong, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science, 2016, 61: 67-103. |
17 | WANG Liang, CUI Lingyan, LIU Yongsheng, et al. Electrospun polyimide nanofiber-coated polyimide nonwoven fabric for hot gas filtration[J]. Adsorption Science & Technology, 2018, 36(9/10): 1734-1743. |
18 | BAO Feng, DAI Xuemin, DONG Zhixin, et al. Fabrication and properties of polyimide copolymer fibers containing pyrimidine and amide units[J]. Journal of Materials Science, 2020, 55(25): 11763-11778. |
19 | 张泽, 徐卫军, 康宏亮, 等. 高性能聚丙烯腈基碳纤维制备技术几点思考[J]. 纺织学报, 2019, 40, (12): 152-161. |
ZHANG Ze, XU Weijun, KANG Hongliang, et al. Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers[J]. Journal of Textile Research, 2019, 40(12): 152-161. | |
20 | QIAO Shiya, KANG Shuai, ZHU Jing, et al. A synergistic self-assembly strategy to fabricate thermally stable OPAN/PI composite aerogels for particulate matter removal[J]. Materials Chemistry Frontiers, 2021, 5(24): 8308-8318. |
21 | FENG Shasha, ZHONG Zhaoxiang, WANG Yong, et al. Progress and perspectives in PTFE membrane: preparation, modification, and applications[J]. Journal of Membrane Science, 2018, 549: 332-349. |
22 | WANG Huaiyuan, YAN Lei, GAO Dong, et al. Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319(1/2): 62-68. |
23 | 杨超鹏, 刘杰, 史宏达, 等. 不同中空纤维膜材料对烟气中二氧化硫的吸收性能影响[J]. 化工进展, 2020, 39(8): 3205-3212. |
YANG Chaopeng, LIU Jie, SHI Hongda, et al. Absorption properties of hollow fiber membranes of different materials for flue gas desulfurization[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3205-3212. | |
24 | 付浩, 肖长发. 含氟聚合物纤维研究进展[J]. 高分子通报, 2018(12): 22-31. |
FU Hao, XIAO Changfa. Research development of fluoropolymer fibers[J]. Polymer Bulletin, 2018(12): 22-31. | |
25 | XU Huan, JIN Wangyong, WANG Feng, et al. Formation and characterization of polytetrafluoroethylene nanofiber membranes for high-efficiency fine particulate filtration[J]. RSC Advances, 2019, 9(24): 13631-13645. |
26 | RAHATE A S, NEMADE K R, WAGHULEY S A. Polyphenylene sulfide (PPS): State of the art and applications[J]. Reviews in Chemical Engineering, 2013, 29(6): 471-489. |
27 | YU Yan, XIONG Siwei, HUANG Hao, et al. Fabrication and application of poly(phenylene sulfide) ultrafine fiber[J]. Reactive and Functional Polymers, 2020, 150: 104539. |
28 | BAI Mingqi, WANG Jian, ZHOU Rong, et al. Polyphenylene sulfide fabric with enhanced oxidation resistance and hydrophobicity through polybenzoxazine surface coating for emission control in harsh environment[J]. Journal of Hazardous Materials, 2022, 432: 128735. |
29 | WEI Zhimei, SU Qing, YANG Jie, et al. High-performance filter membrane composed of oxidized poly(arylene sulfide sulfone) nanofibers for the high-efficiency air filtration[J]. Journal of Hazardous Materials, 2021, 417: 126033. |
30 | WEI Zhimei, SU Qing, WANG Xiaojun, et al. Nanofiber air filters with high-temperature stability and superior chemical resistance for the high-efficiency PM2.5 removal[J]. Industrial & Engineering Chemistry Research, 2021, 60(27): 9971-9982. |
31 | SU Qing, WEI Zhimei, WANG Xiaojun, et al. Electrospun composite membrane based on polyarylene sulfide sulfone/Ag/ZnO nanofibers for antibacterial effective PM2.5 filtration[J]. Journal of Applied Polymer Science, 2022, 139(8): 51693. |
32 | ZHAO Baiwang, SHI Gui Min, LAI Juin-Yih, et al. Braid-reinforced polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration (OSN)[J]. Separation and Purification Technology, 2022, 290: 120811. |
33 | ETXEBERRIA-BENAVIDES M, JOHNSON T, CAO Shuai, et al. PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure[J]. Separation and Purification Technology, 2020, 237: 116347. |
34 | XU Qinfei, WANG Guibin, XIANG Chunhui, et al. Preparation of a novel poly(ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal[J]. Separation and Purification Technology, 2020, 253: 117555. |
35 | 钱幺, 赵宝宝, 钱晓明. 超细无碱玻璃纤维复合滤料的过滤性能[J]. 环境工程学报, 2017, 11(6): 3659-3665. |
QIAN Yao, ZHAO Baobao, QIAN Xiaoming. Filtration performance of ultrafine E-glass fiber composite filter[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3659-3665. | |
36 | 何艳芬, 陈雪善. 玄武岩基/玄武岩+轶纶复合针刺滤材的开发研究[J]. 现代纺织技术, 2017, 25(1): 18-22. |
HE Yanfen, CHEN Xueshan. Study on the development of basalt fiber fabric/basalt fiber & yilun fiber composite needling filter material[J]. Advanced Textile Technology, 2017, 25(1): 18-22. | |
37 | 杨炳文, 刁永发, 杨学宾, 等. 耐高温磁性玄武岩滤料的制备及捕集微细颗粒物研究[J]. 功能材料, 2021, 52(8): 8144-8150. |
YANG Bingwen, DIAO Yongfa, YANG Xuebin, et al. Preparation and study on trapping fine particles of high temperature resistant magnetic filter material[J]. Journal of Functional Materials, 2021, 52(8): 8144-8150. | |
38 | 陈代荣, 韩伟健, 李思维, 等. 连续陶瓷纤维的制备、结构、性能和应用:研究现状及发展方向[J]. 现代技术陶瓷, 22018, 39(3): 151-222. |
CHEN Dairong, HAN Weijian, LI Siwei, et al. Fabrication, microstructure, properties and applications of continunous ceramic fibers: A review of present status and further directions[J]. Advanced Ceramics, 2018, 39(3): 151-222. | |
39 | LI Mingzhu, SU Lei, WANG Hongjie, et al. Stretchable and compressible Si3N4 nanofiber sponge with aligned microstructure for highly efficient particulate matter filtration under high-velocity airflow[J]. Small, 2021, 17(26): 2100556. |
40 | TANG Xingchang, WANG Xiangfei, YANG Lijun, et al. Multifunctional nickel nanofiber for effective air purification: PM removal and NO reduction from automobile exhaust[J]. Journal of Materials Science, 2020, 55(14): 6161-6171. |
41 | LI Dawei, SHEN Ying, WANG Lanlan, et al. Hierarchical structured polyimide-silica hybrid nano/microfiber filters welded by solvent vapor for air filtration[J]. Polymers, 2020, 12(11): 2494. |
42 | DING Zezhao, BABAR A A, WANG Chao, et al. Spunbonded needle-punched nonwoven geotextiles for filtration and drainage applications: Manufacturing and structural design[J]. Composites Communications, 2021, 25: 100481. |
43 | YU Bin, ZHAO Xiaoming. Fabrication and characterization of pre-oxidized PAN composite filters[J]. The Journal of the Textile Institute, 2018, 109(10): 1360-1366. |
44 | WANG Yuxiao, XU Yukang, WANG Dan, et al. Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48437-48449. |
45 | YUAN Xiangnan, CHENG Sha, GAO Jing. PTFE emulsion treatment of polyimide/superfine glass fiber needle-punched complex filters[J]. The Journal of The Textile Institute, 2021: 1-7. |
46 | 张楠, 崔鑫, 靳向煜, 等. 加固工艺及组分对PPS/PTFE复合耐高温滤料性能的影响[J]. 东华大学学报(自然科学版), 2014, 40(2): 202-204, 233. |
ZHANG Nan, CUI Xin, JIN Xiangyu, et al. Effect of different forming process and component to PPS/PTFE composite high temperature resistance filter[J]. Journal of Donghua University (Natural Science), 2014, 40(2): 202-204, 233. | |
47 | MADUNA L, PATNAIK A, MVUBU M, et al. Optimization of air permeability of spunlaced filter fabrics using the Box-Behnken experimental design[J]. Journal of Industrial Textiles, 2020, 50(5): 675-691. |
48 | DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: A review[J]. Physics of Fluids, 2019, 31(9): 091301. |
49 | 胡宝继, 刘凡, 邵伟力, 等. 聚苯硫醚熔喷可纺性的研究[J]. 上海纺织科技, 2019, 47(8): 29-31. |
HU Baoji, LIU Fan, SHAO Weili, et al. Research on melt-blown spinnability of PPS[J]. Shanghai Textile Science & Technology, 2019, 47(8): 29-31. | |
50 | CHEN Qiqi, LIU Yujian, DENG Hangjun, et al. Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration[J]. Polymer Engineering & Science, 2020, 60(11): 2887-2894. |
51 | 陈金妹, 李爱君, 谈萍, 等. 金属纤维毡过滤效率研究[J]. 粉末冶金工业, 2021, 31(2): 109-112. |
CHEN Jinmei, LI Aijun, TAN Ping, et al. Study of filtration efficiency in metal fiber felts[J]. Powder Metallurgy Industry, 2021, 31(2): 109-112. | |
52 | 姬忠礼, 栾鑫, 苗林丰. 高温气体过滤技术及装备发展概况[J]. 化工进展, 2020, 39(6): 2304-2311. |
JI Zhongli, LUAN Xin, MIAO Linfeng. Overview of hot-gas filtration technology and equipment development[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2304-2311. | |
53 | LU Tao, CUI Jiaxin, QU Qingli, et al. Multistructured electrospun nanofibers for air filtration: A review[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23293-23313. |
54 | LIU Hui, LIU Lifang, YU Jianyong, et al. High-efficiency and super-breathable air filters based on biomimetic ultrathin nanofiber networks[J]. Composites Communications, 2020, 22: 100493. |
55 | 胡敏, 仲兆祥, 邢卫红. 纳米纤维膜在空气净化中的应用研究进展[J]. 化工进展, 2018, 37(4): 1305-1313. |
HU Min, ZHONG Zhaoxiang, XING Weihong. Development of nanofiber membrane for air purification[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1305-1313. | |
56 | 王慧, 刘新懿, 王伟, 等. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356. |
WANG Hui, LIU Xinyi, WANG Wei, et al. Research and application of electrospun nanofibers with special morphology: A review[J]. Chemical Industry and Engineering Progress, , 2022, 41(8): 4341-4356. | |
57 | Dan LYU, TANG Guosheng, CHEN Long, et al. Multifunctional gas-spinning hierarchical architecture: A robust and efficient nanofiber membrane for simultaneous air and water contaminant remediation[J]. ACS Applied Polymer Materials, 2020, 2(12): 5686-5697. |
58 | ZHOU Yangjian, LIU Yanan, ZHANG Mingxin, et al. Electrospun nanofiber membranes for air filtration: A review[J]. Nanomaterials, 2022, 12(7): 1077. |
59 | CHEN Bowen, WANG Jingxiao, JIANG Youlin, et al. Stable zirconium carbide fibers fabricated by centrifugal spinning technique[J]. Journal of Inorganic Materials, 2020, 35(12): 1385. |
60 | LI Zhen, YU Zhiqun, WU Yundi, et al. Self-sterilizing diblock polycation-enhanced polyamidoxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater[J]. Chemical Engineering Journal, 2020, 390: 124648. |
61 | 郝天煦, 张林, 王新亚, 等. 静电纺微结构纳米纤维空气过滤膜研究进展[J]. 棉纺织技术, 2022, 50(2): 78-84. |
HAO Tianxu, ZHANG Lin, WANG Xinya, et al. Research progress of electrospinning microstructure nanofiber air filtration film[J]. Cotton Textile Technology, 2022, 50(2): 78-84. | |
62 | YANG Xue, PU Yi, ZHANG Yifei, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. Journal of Hazardous Materials, 2020, 391: 122254. |
63 | YU Jia, TIAN Xu, XIN Binjie, et al. Preparation and characterization of PMIA nanofiber filter membrane for air filter[J]. Fibers and Polymers, 2021, 22(9): 2413-2423. |
64 | LI Yajian, YUAN Ding, GENG Qian, et al. MOF-embedded bifunctional composite nanofiber membranes with a tunable hierarchical structure for high-efficiency PM0.3 purification and oil/water separation[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39831-39843. |
65 | YANG Xue, PU Yi, LI Shuxia, et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43188-43199. |
66 | ATICI B, ÜNLÜ C H, YANILMAZ M. A review on centrifugally spun fibers and their applications[J]. Polymer Reviews, 2022, 62(1): 1-64. |
67 | YANILMAZ M, ASIRI A M., ZHANG Xiangwu. Centrifugally spun porous carbon microfibers as interlayer for Li-S batteries[J]. Journal of Materials Science, 2020, 55(8): 3538-3548. |
68 | HUANG Ya, SONG Jianan, YANG Cheng, et al. Scalable manufacturing and applications of nanofibers[J]. Materials Today, 2019, 28: 98-113. |
69 | TEPEKIRAN B N, CALISIR M D, POLAT Y, et al. Centrifugally spun silica (SiO2) nanofibers for high-temperature air filtration[J]. Aerosol Science and Technology, 2019, 53(8): 921-932. |
70 | WANG Antuo, LI Xianglong, HOU Teng, et al. High efficiency, low resistance and high temperature resistance PTFE porous fibrous membrane for air filtration[J]. Materials Letters, 2021, 295: 129831. |
71 | GAO Yuan, ZHANG Jun, SU Ying, et al. Recent progress and challenges in solution blow spinning[J]. Materials Horizons, 2021, 8(2): 426-446. |
72 | WANG H, LIN S, YANG S, et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge[J]. Small, 2018, 14(19): 1800258. |
73 | JIA Chao, LIU Yibo, LI Lei, et al. A foldable all-ceramic air filter paper with high efficiency and high-temperature resistance[J]. Nano Letters, 2020, 20(7): 4993-5000. |
74 | LI Ziwei, SONG Jianan, LONG Yuanzheng, et al. Large-scale blow spinning of heat-resistant nanofibrous air filters[J]. Nano Research, 2020, 13(3): 861-867. |
75 | 刘朝军, 刘俊杰, 丁伊可, 等. 高效空气过滤用PTFE膜材料的结构和性能[J]. 化工进展, 2022, 41(8): 4367-4374. |
LIU Chaojun, LIU Junjie, DING Yike, et al. Structure and properties of PTFE membrane for high efficiency air filtration[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4367-4374. | |
76 | XU Huan, JIN Wangyong, LUO Jie, et al. Study of the PTFE multi-tube high efficiency air filter for indoor air purification[J]. Process Safety and Environmental Protection, 2021, 151: 28-38. |
77 | YU Na, ZHU Xiangming, FENG Shasha, et al. A breathable PTFE membrane for enhanced moxibustion process and occupational health protection[J]. Journal of Membrane Science, 2022, 655: 120579. |
78 | HAN Lupeng, CAI Sixiang, GAO Min, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
79 | FENG Shasha, ZHOU Mengdi, HAN Feng, et al. A bifunctional MnO x @PTFE catalytic membrane for efficient low temperature NO x -SCR and dust removal[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1260-1267. |
80 | 单良, 尹荣强, 王慧, 等. VMoTi/玻璃纤维复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021, 72(9): 4892-4899. |
SHAN Liang, YIN Rongqiang, WANG Hui, et al. Preparation of VMoTi/glass fiber catalytic filter-cloth and research on its dust and NO x synergistic removal performance[J]. CIESC Journal, 2021, 72(9): 4892-4899. | |
81 | CHEN Ying, HE Hongwei, WU Shaohua, et al. Mn/Ce oxides decorated polyphenylene sulfide needle-punching fibrous felts for dust removal and denitration application[J]. Polymers, 2020, 12(1): 168. |
82 | LI Qun, WU Jiabin, HUANG Liang, et al. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes[J]. Journal of Materials Chemistry A, 2018, 6(25): 12115-12124. |
83 | YIN Linghui, HU Min, LI Dongyan, et al. Multifunctional ZIF-67@SiO2 membrane for high efficiency removal of particulate matter and toxic gases[J]. Industrial & Engineering Chemistry Research, 2016, 138(18): 5785-5788. |
84 | ZHANG Yuanyuan, YUAN Shuai, FENG Xiao, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788. |
85 | XIE Fan, WANG Yafang, ZHUO Longhai, et al. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control[J]. Journal of Hazardous Materials, 2021, 412: 125260. |
86 | ZHU Qiuyun, TANG Xi, FENG Shasha, et al. ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control[J]. Journal of Membrane Science, 2019, 581: 252-261. |
87 | JU Linxin, LI Fan, ZHOU Rong, et al. Manganese oxides decorated polyphenylene sulfide needle-punching fibrous felts: A new composite for dust removal and denitration application[J]. Fibers and Polymers, 2021, 22: 2483-2490. |
88 | ZHOU Huixian, ZHONG Hui, ZENG Yiqing, et al. A strategy for constructing highly efficient Co3O4-C@SiO2 nanofibers catalytic membrane for NH3-SCR of NO and dust filtration[J]. Separation and Purification Technology, 2022, 292: 120997. |
89 | WANG Xiaoyu, XU Wenshi, GU Jin′ge, et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively[J]. Nanoscale, 2019, 11(38): 17782-17790. |
90 | FENG Shasha, LI Xingya, ZHAO Shuaifei, et al. Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption[J]. Environmental Science: Nano, 2018, 5(12): 3023-3031. |
91 | FENG Shasha, LI Dongyan, Zexian LOW, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93. |
92 | SU Jiafei, YANG Guohong, CHENG Cuilian, et al. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation[J]. Journal of Colloid and Interface Science, 2017, 507: 386-396. |
93 | ZHU Xiao, FENG Shasha, RAO Yuanyuan, et al. A novel semi-dry method for rapidly synthesis ZnO nanorods on SiO2@PTFE nanofiber membrane for efficient air cleaning[J]. Journal of Membrane Science, 2022, 645: 120206. |
94 | LI Tao, LIU Meng, DUAN Yufeng, et al. Performance and reaction mechanism for low-temperature NO x catalytic synergistic Hg0 oxidation of catalytic polyphenylene sulfide filter materials[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(1): 2403. |
95 | WANG Yan, ZHAN Sihui, DI Song, et al. Novel flexible self-standing Pt/Al2O3 nanofibrous membranes: Synthesis and multifunctionality for environmental remediation[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26396-26404. |
[1] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[2] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[3] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
[4] | 唐春霞, 李萌, 王玉玺, 宗永忠, 付少海. Cr(Ⅵ)去除用功能化纤维素纳米材料的结构设计研究进展[J]. 化工进展, 2023, 42(2): 585-594. |
[5] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[6] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
[7] | 刘朝军, 刘俊杰, 丁伊可, 张建青. 高效空气过滤用PTFE膜材料的结构和性能[J]. 化工进展, 2022, 41(8): 4367-4374. |
[8] | 王慧, 刘新懿, 王伟, 万同, 厉宗洁, 王劭妤, 程博闻. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356. |
[9] | 詹洵, 陈健, 杨兆哲, 吴国民, 孔振武, 沈葵忠. 纳米纤维素构建超疏水材料研究进展[J]. 化工进展, 2022, 41(8): 4303-4313. |
[10] | 陈博, 陈伟香, 唐丽荣, 洪祺祺, 严雪, 靳江涛, 吕日新, 黄彪. 基于硝化纳米纤维素/琼脂的高灵敏度湿度传感器[J]. 化工进展, 2022, 41(5): 2604-2614. |
[11] | 周丽莎, 李若男, 卞雨洁, 陈舜胜. TOCNF与磁性羧甲基壳聚糖纳米粒子复合物的制备及吸附Pb2+的特性[J]. 化工进展, 2022, 41(2): 901-910. |
[12] | 李若男, 周丽莎, 陈舜胜, 徐建雄, 邓子龙, 张洪才. 纤维素纳米纤维及其改性产物吸附重金属的研究进展[J]. 化工进展, 2022, 41(1): 310-319. |
[13] | 刘荣涛, 张诗洋, 黄兴文, 朋小康, 闵永刚. 聚苯胺/聚乳酸复合纳米纤维表面形貌对生物相容性的影响[J]. 化工进展, 2021, 40(8): 4406-4412. |
[14] | 罗惠玲, 邵诸锋, 王树博, 徐先林. 多孔有机笼在聚丙烯腈纳米纤维表面固载及其复合质子交换膜[J]. 化工进展, 2021, 40(7): 3854-3861. |
[15] | 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |