1 |
WANG D Y, HUANG Y, CAI W T, et al. Functionalized multi-wall carbon nanotubes/silicone rubber composite as capacitive humidity sensor[J]. Journal of Applied Polymer Science, 2014, 131(11): 40342.
|
2 |
FARAHANI H, WAGIRAN R, HAMIDON M N. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review[J]. Sensors, 2014, 14(5): 7881-7939.
|
3 |
DAI J X, ZHANG T, ZHAO H R, et al. Preparation of organic-inorganic hybrid polymers and their humidity sensing properties[J]. Sensors and Actuators B: Chemical, 2017, 242: 1108-1114.
|
4 |
赵晨. 基于改性碳纳米管的QCM型湿度传感器的研究[D]. 长春: 吉林大学, 2018.
|
|
ZHAO Chen. Study on QCM humidity sensor based on modified carbon nanotubes[D]. Changchun: Jilin University, 2018.
|
5 |
LIN J B, GAO N B, LIU J M, et al. Superhydrophilic Cu(OH)2 nanowire-based QCM transducer with self-healing ability for humidity detection[J]. Journal of Materials Chemistry A, 2019, 7(15): 9068-9077.
|
6 |
MANNELLI I, MINUNNI M, TOMBELLI S, et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection[J]. Biosensors and Bioelectronics, 2003, 18(2/3): 129-140.
|
7 |
WU Z Q, CHEN X D, ZHU S B, et al. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite[J]. Sensors and Actuators B: Chemical, 2013, 178: 485-493.
|
8 |
LAHRECH K, SAFOUANE A, PEYRELLASSE J. Sol state formation and melting of agar gels rheological study[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 358(1): 205-211.
|
9 |
李亚男, 吴建美, 宋登鹏, 等. 纤维素/琼脂糖复合膜的制备、表征及其形状记忆性能研究[J]. 功能材料, 2021, 52(3): 3086-3091, 3097.
|
|
LI Yanan, WU Jianmei, SONG Dengpeng, et al. Preparation, characterization and shape memory properties of cellulose/agarose composite film[J]. Journal of Functional Materials, 2021, 52(3): 3086-3091, 3097.
|
10 |
LI H J, ZHENG H, TAN Y J, et al. Development of an ultrastretchable double-network hydrogel for flexible strain sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 12814-12823.
|
11 |
HOU W W, SHENG N N, ZHANG X H, et al. Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors[J]. Carbohydrate Polymers, 2019, 211: 322-328.
|
12 |
YANG B W, YUAN W Z. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16765-16775.
|
13 |
CAO Y, MORRISSEY T G, ACOME E, et al. A transparent, self-healing, highly stretchable ionic conductor[J]. Advanced Materials, 2017, 29(10): 1605099.
|
14 |
CHEN Q, ZHU L, ZHAO C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J]. Advanced Materials, 2013, 25(30): 4171-4176.
|
15 |
WANG J L, LIU Y, SU S H, et al. Ultrasensitive wearable strain sensors of 3D printing tough and conductive hydrogels[J]. Polymers, 2019, 11(11): 1873.
|
16 |
PRESTI D LO, MASSARONI C, PIEMONTE V, et al. Agar-coated fiber Bragg grating sensor for relative humidity measurements: influence of coating thickness and polymer concentration[J]. IEEE Sensors Journal, 2019, 19(9): 3335-3342.
|
17 |
BASIRI S, MEHDINIA A, JABBARI A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545: 138-146.
|
18 |
YANG J, XIA Y F, XU P, et al. Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation[J]. Cellulose, 2018, 25(6): 3533-3544.
|
19 |
WHITE R J, BRUN N, BUDARIN V L, et al. Always look on the “light” side of life: sustainable carbon aerogels[J]. ChemSusChem, 2014, 7(3): 670-689.
|
20 |
BARANDUN G, SOPRANI M, NAFICY S, et al. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases[J]. ACS Sensors, 2019, 4(6): 1662-1669.
|
21 |
ZHOU J, BUTCHOSA N, JAYAWARDENA H S N, et al. Synthesis of multifunctional cellulose nanocrystals for lectin recognition and bacterial imaging[J]. Biomacromolecules, 2015, 16(4): 1426-1432.
|
22 |
ESMAEILI C, ABDI M M, MATHEW A P, et al. Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose[J]. Sensors, 2015, 15(10): 24681-24697.
|
23 |
SADASIVUNI K K, KAFY A, ZHAI L D, et al. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing[J]. Small, 2015, 11(8): 994-1002.
|
24 |
ZHENG Z, TANG C X, YEOW J T W. A high-performance CMUT humidity sensor based on cellulose nanocrystal sensing film[J]. Sensors and Actuators B: Chemical, 2020, 320: 128596.
|
25 |
YANG H, CHOIS E, KIM D, et al. Color-spectrum-broadened ductile cellulose films for vapor-pH-responsive colorimetric sensors[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 590-596.
|
26 |
YAO Y, HUANG X H, ZHANG B Y, et al. Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure[J]. Sensors and Actuators B: Chemical, 2020, 302: 127192.
|
27 |
WANG D C, YU H Y, QI D M, et al. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24435-24446.
|
28 |
TANG L R, CHEN W X, CHEN B, et al. Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals[J]. Sensors and Actuators B: Chemical, 2021, 327: 128944.
|
29 |
CHEN L H, LI T, CHAN C C, et al. Chitosan based fiber-optic Fabry-Perot humidity sensor[J]. Sensors and Actuators B: Chemical, 2012, 169: 167-172.
|
30 |
ZHAO Y, TONG R J, CHEN M Q, et al. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA[J]. Sensors and Actuators B: Chemical, 2019, 284: 96-102.
|
31 |
ZHU P H, LIU Y, FANG Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35(14): 4834-4842.
|
32 |
PANG Y, JIAN J M, TU T, et al. Wearable humidity sensor based on porous graphene network for respiration monitoring[J]. Biosensors and Bioelectronics, 2018, 116: 123-129.
|
33 |
MANJUNATHA S, MACHAPPA T, RAVIKIRAN Y T, et al. Polyaniline based stable humidity sensor operable at room temperature[J]. Physica B: Condensed Matter, 2019, 561: 170-178.
|
34 |
WU J, SUN Y M, WU Z X, et al. Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4242-4251.
|
35 |
YAO Y, HUANG X H, CHEN Q, et al. High sensitivity and high stability QCM humidity sensors based on polydopamine coated cellulose nanocrystals/graphene oxide nanocomposite[J]. Nanomaterials, 2020, 10(11): 2210.
|
36 |
YUAN Q, GENG W C, LI N, et al. Study on humidity sensitive property of K2CO3-SBA-15 composites[J]. Applied Surface Science, 2009, 256(1): 280-283.
|
37 |
ZHAO H R, LIN X Z, QI R R, et al. A composite structure of in situ cross-linked poly(ionic liquid)s and paper for humidity-monitoring applications[J]. IEEE Sensors Journal, 2019, 19(3): 833-837.
|
38 |
WANG Y, ZHANG L N, ZHOU J P, et al. Flexible and transparent cellulose-based ionic film as a humidity sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7631-7638.
|