12 |
DING Jijun, YANG Mingya, CHEN Haixia, et al. Construction of ZnO/GaN in-plane heterojunction with different contacted modes and vacancy defects for improving magnetic and adsorption properties[J]. Applied Surface Science, 2022, 604: 154500.
|
13 |
ZOU Dongna, JAMAL R, ABDIRYIM T, et al. Construction and properties of ZnO/poly(EDOT-pyridine-EDOT) core/shell heterostructure nanoarrays for UV photodetector[J]. Synthetic Metals, 2022, 291: 117192.
|
14 |
NAVALE Y H, NAVALE S T, STADLER F J, et al. Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors[J]. Ceramics International, 2019, 45(2): 1513-1522.
|
15 |
XUAN Jingyue, WANG Li, ZOU Yecheng, et al. Room-temperature gas sensor based on in situ grown, etched and W-doped ZnO nanotubes functionalized with Pt nanoparticles for the detection of low-concentration H2S[J]. Journal of Alloys and Compounds, 2022, 922: 166158.
|
16 |
YANG Youzhi, WU Sini, CAO Yuehong, et al. A highly efficient room-temperature formaldehyde gas sensor based on a Ni-doped ZnO hierarchical porous structure decorated with NiS illuminated by UV light[J]. Journal of Alloys and Compounds, 2022, 920: 165850.
|
17 |
WANG Ziyan, YANG Xueli, SUN Caixuan, et al. Excellent acetone sensing performance of Au NPs functionalized Co3O4-ZnO nanocomposite[J]. Sensor Review, 2022, 42(6): 638-647.
|
18 |
FANG Jian, XUE Jingjing, XIAO Rongpu, et al. Synthesis of Pr-doped ZnO nanospindles by one-pot precipitation as a triethylamine sensor[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108334.
|
19 |
OOSTHUIZEN D N, MOTAUNG D E, SWART H C. Gas sensors based on CeO2 nanoparticles prepared by chemical precipitation method and their temperature-dependent selectivity towards H2S and NO2 gases[J]. Applied Surface Science, 2020, 505: 144356.
|
20 |
BUAPUEAN T, JARUDILOKKUL S. Synthesis of mesoporous Zn-doped TiO2 nanoparticles by colloidal emulsion aphrons and their use for dye-sensitized solar cells[J]. Russian Journal of Applied Chemistry, 2020, 93(8): 1229-1236.
|
21 |
XUE Dongping, WANG Pengtao, ZHANG Zhanying, et al. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study[J]. Sensors and Actuators B: Chemical, 2019, 296: 126710.
|
22 |
KIM Hogyoung, JUNG Myeong Jun, CHOI Byung Joon. Barrier height enhancement in Pt/n-Ge Schottky junction with a ZnO interlayer prepared by atomic layer deposition[J]. Journal of the Korean Physical Society, 2022, 81(3): 241-246.
|
23 |
ZHANG Saisai, LI Yanwei, SUN Guang, et al. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance[J]. Applied Surface Science, 2019, 497: 143811.
|
24 |
LIU Yiping, ZHU Liyuan, FENG Pu, et al. Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing[J]. Sensors and Actuators B: Chemical, 2022, 367: 132024.
|
25 |
XU Qi, JU Dianxing, ZHANG Zichao, et al. Near room-temperature triethylamine sensor constructed with CuO/ZnO P-N heterostructural nanorods directly on flat electrode[J]. Sensors and Actuators B: Chemical, 2016, 225: 16-23.
|
26 |
JU Dianxing, XU Hongyan, QIU Zhiwen, et al. Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction[J]. Sensors and Actuators B: Chemical, 2014, 200: 288-296.
|
27 |
MA Qian, FANG Yuan, LIU Yu, et al. Facile synthesis of ZnO morphological evolution with tunable growth habits: Achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for triethylamine[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 106: 180-186.
|
28 |
SUN Guang, CHEN Honglin, LI Yanwei, et al. Synthesis and triethylamine sensing properties of mesoporous α-Fe2O3 microrods[J]. Materials Letters, 2016, 178: 213-216.
|
29 |
XU Hongyan, JU Judianxing, LI Wenru, et al. Superior triethylamine-sensing properties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes[J]. Sensors and Actuators B: Chemical, 2016, 228: 634-642.
|
30 |
YANG Xueli, YU Qi, ZHANG Sufang, et al. Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites[J]. Sensors and Actuators B: Chemical, 2018, 266: 213-220.
|
31 |
YANG Hongyan, CHENG Xiaoli, ZHANG Xianfa, et al. A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays[J]. Sensors and Actuators B: Chemical, 2014, 205: 322-328.
|
32 |
WU Minzi, ZHANG Xianfa, GAO Shan, et al. Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property[J]. CrystEngComm, 2013, 15(46): 10123-10131.
|
33 |
LI Wenru, XU Hongyan, ZHAI Ting, et al. Enhanced triethylamine sensing properties by designing Au@SnO2/MoS2 nanostructure directly on alumina tubes[J]. Sensors and Actuators B: Chemical, 2017, 253: 97-107.
|
34 |
ZHAI Ting, XU Hongyan, LI Wenru, et al. Low-temperature in situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure[J]. Journal of Alloys and Compounds, 2018, 737: 603-612.
|
35 |
ZHANG Dongzhi, YANG Zhimin, WU Zhenling, et al. Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing[J]. Sensors and Actuators B: Chemical, 2019, 283: 42-51.
|
1 |
DAI Hongbin, HUANG Guangqiu, WANG Jingjing, et al. Regional VOCs gathering situation intelligent sensing method based on spatial-temporal feature selection[J]. Atmosphere, 2022, 13(3): 483.
|
2 |
GAO Shang, ZHAO Yuli, WANG Wei, et al. Au/CuO/Cu2O heterostructures for conductometric triethylamine gas sensing[J]. Sensors and Actuators B: Chemical, 2022, 371: 132515.
|
3 |
CAI Liuxin, CHEN Li, SUN Xiqian, et al. Ultra-sensitive triethylamine gas sensors based on polyoxometalate-assisted synthesis of ZnWO4/ZnO hetero-structured nanofibers[J]. Sensors and Actuators B: Chemical, 2022, 370: 132422.
|
4 |
GUO Jia, LI Hang, MA Qian, et al. Surface oxygen vacancies actuated MoO3/CuMoO4 self-assembled microspheres for highly selective triethylamine detection[J]. Sensors and Actuators B: Chemical, 2022, 369: 132256.
|
5 |
LI Hang, ZHANG Qi, GUO Jia, et al. In-situ growth of hierarchical SnO2/In2O3 heterostructures with multiple effective n-n heterojunctions for superior triethylamine-sensing performances[J]. Sensors and Actuators B: Chemical, 2022, 369: 132377.
|
6 |
ZHANG Yueying, MA Ce, YANG Xinyu, et al. NASICON-based gas sensor utilizing MMnO3 (M: Gd, Sm, La) sensing electrode for triethylamine detection[J]. Sensors and Actuators B: Chemical, 2019, 295: 56-64.
|
7 |
LI Guodong, SHEN Yanbai, ZHAO Sikai, et al. Novel sensitizer Au x Sn modify rGO-SnO2 nanocomposites for enhancing detection of sub-ppm H2 [J]. Sensors and Actuators B: Chemical, 2022, 373: 132656.
|
8 |
TIAN Hailin, FAN Huiqing, MA Jiangwei, et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[J]. Journal of Hazardous Materials, 2018, 341: 102-111.
|
9 |
DING Jijun, DAI Hangfei, CHEN Haixia, et al. Highly sensitive ethylene glycol gas sensor based on ZnO/rGO nanosheets[J]. Sensors and Actuators B: Chemical, 2022, 372: 132655.
|
10 |
SUN Lili, GUO Yun, LIU Yanchao, et al. Construction of hierarchical tourmaline@ZnO/MWCNT micro-nanostructured composite and its conductometric gas sensibility for n-butanol detection[J]. Sensors and Actuators B: Chemical, 2022, 371: 132533.
|
11 |
HU Jingjie, YUAN Qiming, ZHANG Cheng, et al. A facile cotton biotemplate to fabricate porous ZnFe2O4 sheets for acetone gas sensing application[J]. Sensors and Actuators B: Chemical, 2022, 371: 132587.
|
36 |
SIL I, CHAKRABORTY B, DUTTA K, et al. Capacitive mode vapor sensing phenomenon in ZnO homojunction: An insight through space charge model and electrical equivalent circuit[J]. IEEE Sensors Journal, 2022, 22(10): 9483-9490.
|
37 |
WANG Yan, MENG Xiaoning, YAO Mengxia, et al. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets[J]. Ceramics International, 2019, 45(10): 13150-13157.
|