[1] HE J, WU P W, WU Y C, et al. Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidation desulfurization[J]. ACS Sustain. Chem. Eng., 2017, 5(10):8930-8938.
[2] ZHAO R J, WANG J L, ZHANG D D, et al. Deep catalytic oxidative desulfurization of model fuel based on modified iron porphyrins in ionic liquids:anionic ligand effect[J]. ACS Sustain. Chem. Eng., 2017, 5(3):2050-2055.
[3] ZHAO H, BAKER G A. Oxidative desulfurization of fuels using ionic liquids:a review[J]. Front. Chem. Sci. Eng., 2015, 9(3):262-279.
[4] BAZYARI A, KHODADADI A A, HAGHIGHAT M A, et al. Microporous titania-silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization[J]. Appl. Catal. B:Environ., 2016, 180:65-77.
[5] 张海燕, 代跃利, 蔡蕾. 杂多酸催化剂催化氧化脱硫研究进展[J].化工进展, 2013, 32(4):809-815. ZHANG H Y, DAI Y L, CAI L. Research progress of heteropoly acid catalyzed oxidative desulfurization[J]. Chemical Industry and Engineering Progress, 2013, 32(4):809-815.
[6] 于凤丽, 唐会宝, 柳春玉,等. 氧化-温控双功能离子液体催化O2氧化模拟柴油脱硫[J]. 化学学报, 2014, 72:1152-1156. YU F L, TANG H B, LIU C Y, et al. Oxidative desulfurization of model diesel with O2 catalyzed by oxidative-thermoregulated bifunctional ionic liquids[J]. Acta Chimica Sinica, 2014, 72:1152-1156.
[7] CHAMACK M, MAHJOUB A R, AGHAYAN H. Catalytic performance of vanadium-substituted molybdophosphoric acid supported on zirconium modified mesoporous silica in oxidative desulfurization[J]. Chemical Engineering Research & Design, 2015, 94:565-572.
[8] 李瑞丽, 吕本震, 蒋善良, 等. 磷钨酸/SBA-15催化氧化-萃取柴油脱硫[J].化工进展, 2016, 35(9):2790-2795. LI R L, LV B Z, JIANG S L, et al. Diesel desulfurization by phosphotungstic acid/SBA-15 catalytic oxidation-extraction[J]. Chemical Industry and Engineering Progress, 2016, 35(9):2790-2795.
[9] 侯影飞, 李力军, 蒋驰. 活性炭负载磷钨酸催化剂的制备及其催化氧化脱硫性能[J]. 化工进展, 2017, 36(11):4072-4079. HOU Y F, LI L J, JIANG C. Preparation and performance of phosphotungstic acid/activated carbon catalyst for catalytic oxidative desulfurization[J]. Chemical Industry and Engineering Progress, 2017, 36(11):4072-4079.
[10] 张娟, 胡颜荟, 任腾杰, 等. Ti-MCM-41负载酞菁铁光催化氧化脱硫[J]. 化工学报, 2015, 66(9):3437-3443. ZHANG J, HU Y H, REN T J, et al. Photocatalytic oxidation desulfurization by iron phthalocyanine supported on Ti-MCM-41[J]. CIESC Journal, 2015, 66(9):3437-3443.
[11] 张璐璐, 孙悦, 王喆, 等.TiO2/SBA-15的制备及光催化氧化脱硫性能[J]. 硅酸盐学报, 2016, 44(1):56-62. ZHANG L L, SUN Y, WANG Z, et al. Preparation and photocatalytic oxidation desulfurization performance of TiO2/SBA-15[J]. Journal of the Chinese Ceramic Society, 2016, 44(1):56-62.
[12] 张璐璐, 詹金友, 孙尧, 等. WO3-TiO2/SBA-15的制备及其光催化氧化脱硫性能[J]. 燃料化学学报, 2016, 44(6):754-762. ZHANG L L, ZHAN J Y, SUN Y, et al. Preparation of WO3-TiO2/SBA-15 catalyst and its photocatalytic performance in oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6):754-762.
[13] WANG C, ZHU W S, XU Y H, Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization[J]. Ceramics International, 2014, 40(8):11627-11635.
[14] 叶飞燕, 梅亮, 肖静. Ti-Si-O双功能催化吸附材料的汽油光催化-吸附耦合脱硫性能[J]. 化工学报, 2015, 66(12):4858-4864. YE F Y, MEI L, XIAO J. UV photocatalysis-assisted adsorptive desulfurization of gasoline using bi-functional Ti-Si-O material[J]. CIESC Journal, 2015, 66(12):4858-4864.
[15] 甄延忠, 王杰, 付梦溪. AgI/h-MoO3异质结的构筑及其模拟燃油光催化氧化脱硫活性[J]. 无机化学学报, 2017, 33(10):1731-1740. ZHEN Y Z, WANG J, FU M X. AgI/h-MoO3 heterojunctions:fabrication and photocatalytic oxidative desulfurization activity of simulation fuel[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(10):1731-1740.
[16] 李鑫, 童靖予, 张伟. TiO2-CeO2光催化吸附协同脱除柴油中的有机硫[J]. 燃料化学学报, 2017, 45(5):608-615. LI X, TONG J Y, ZHANG W. Synergy of photocatalysis and adsorption on TiO2-CeO2 for the removal of organosulfur compounds from diesel fuel[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5):608-615.
[17] 陈颖, 马金丽, 李金莲, 等. 改性TiO2催化剂光催化氧化脱硫[J]. 化工进展, 2007, 26(12):1749-1753. CHEN Y, MA J L, LI J L, et al. Photocatalytic oxidation desulfurization with modified TiO2[J]. Chemical Industry and Engineering Progress, 2007, 26(12):1749-1753.
[18] UMAIR A, AZAM K, WASEEM R, et al. Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity[J]. Catalysis Today, 2017, 284:169-178.
[19] 孟庆明, 王鉴. 并流沉淀法合成Fe掺杂ZnO及其光催化脱氮性能[J]. 化工学报, 2017, 68(1):437-443. MENG Q M, WANG J. Synthesis of Fe-doped ZnO by parallel flow precipitation method and its photocatalytic denitrification performance[J]. CIESC Journal, 2017, 68(1):437-443.
[20] MORASAE Samadi, MOHAMMAD Zirak, AMENE Naseri, et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis[J]. Thin Solid Films, 2016, 605:2-19.
[21] 陈枭, 石倩, 杨乐, 等. 纳米氧化锌表面修饰及其应用研究进展[J]. 化工进展, 2018, 37(2):621-627. CHEN X, SHI Q, YANG L, et al. Research progress in surface-modification and applications of nano zinc oxide[J]. Chemical Industry and Engineering Progress, 2018, 37(2):621-627.
[22] MIAO G, HUANG D S, REN X L. Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with air/cumene hydroperoxide under ambient conditions[J]. Appl. Catal. B:Environ., 2016, 192:72-79.
[23] CAI L, REN F, WANG M, et al. V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light[J]. Int. J. Hydrog. Energy, 2015, 40:1394-1401.
[24] SANOOP P K, ANAS S, ANANTHAKUMAR S, et al. Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation[J]. Arab. J. Chem., 2016, 9(2):S1618-S1626.
[25] LI F, YAN B, ZHANG J, et al. Study on desulfmization efficiency and products of Ce-doped nanosized ZnO desulfwizer at ambient tempemtm[J]. Journal of Rare Earths, 2007, 25:306-310.
[26] LI X S, LIU Y J, ZENG Z Y, et al. Equilibrium hydrate formation conditions for the mixtures of methane+ionic liquids+water[J]. Journal of Chemical and Engineering Data, 2011, 56(1):119-123.
[27] XIAO C W, ADIDHARMA H. Dual function inhibitors for methane hydrate[J]. Chemical Engineering Science, 2009, 64(7):1522-1527.
[28] THI V H-T, LEE B-K. Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation[J]. Mater. Res. Bull., 2017, 96:171-182.
[29] 郎集会, 韩强, 张旗, 等. 水热温度对稀土Ce掺杂ZnO纳米棒的结构和光学性能影响[J]. 江苏大学学报(自然科学版), 2015, 2:224-227. LANG J H, HAN Q, ZHANG Q, et al. Influence of hydrothermal temperature on structure and photoluminescence property of Ce-doped ZnO nanorods[J]. Journal of Jiangsu University(Natural Science Edition), 2015, 2:224-227.
[30] 梁鹏举, 白红进, 姜建辉, 等. 三维多孔CuCo2O4的制备及其超级电容性能研究[J].化工新型材料, 2016, 44(10):179-181. LANG P J, BAI H J, JIANG J H, et al. Synthesis of three-dimensional porous CuCo2O4 and its supercapacitor property[J]. New Chemical Materials, 2016, 44(10):179-181.
[31] WANG L, JI Z Y, LIN J J, et al. Preparation and optical and photocatalytic properties of Ce-doped ZnO microstructures by simple solution method[J]. Mat. Sci. Semicon. Proc., 2017, 71:401-408.
[32] KOAO L F, DEJENE F B, TSEGA M, et al. Annealed Ce3+-doped ZnO flower-like morphology synthesized by chemical bath deposition method[J]. Physica B, 2016, 480:53-57.
[33] SIN J C, LAM S M, LEE K T, et al. Preparation of cerium-doped ZnO hierarchical micro/nanospheres with enhanced photocatalytic performance for phenol degradation under visible light[J]. J. Mol. Catal. A:Chem., 2015, 409:1-10.
[34] LI L, ZHANG J, SHEN C, et al. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation[J]. Fuel, 2016, 167:9-16. |