1 |
CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67: 489-512.
|
2 |
ZHU Z P, TONG Y P, TANG W Y, et al. Distribution of As, Cd, and Pb in seafood in Southern China and their oral bioavailability in mice[J]. Environmental Science and Pollution Research, 2017, 24(4): 3572-3581.
|
3 |
MAULVAULT A L, ANACLETO P, BARBOSA V, et al. Toxic elements and speciation in seafood samples from different contaminated sites in Europe[J]. Environmental Research, 2015, 143: 72-81.
|
4 |
GENG Y, JIANG L J, JIANG H X, et al. Assessment of heavy metals, fungicide quintozene and its hazardous impurity residues in medical Panax notoginseng(Burk) F.H.Chen root[J]. Biomedical Chromatography, 2019, 33(2): e4378.
|
5 |
HAMAD A A, HASSOUNA M S, SHALABY T I, et al. Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals[J]. International Journal of Biological Macromolecules, 2020, 151: 1299-1313.
|
6 |
ISOGAI A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials[J]. Journal of Wood Science, 2013, 59(6): 449-459.
|
7 |
KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: a new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 5438-5466.
|
8 |
LAVOINE N, DESLOGES I, DUFRESNE A, et al. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review[J]. Carbohydrate Polymers, 2012, 90(2): 735-764.
|
9 |
ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in surface-modified cellulose nanofibrils[J]. Progress in Polymer Science, 2019, 88: 241-264.
|
10 |
ZHU C T, SOLDATOV A, MATHEW A P. Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu(Ⅱ) onto TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2017, 9(22): 7419-7428.
|
11 |
LIU P, OKSMAN K, MATHEW A P. Surface adsorption and self-assembly of Cu(Ⅱ) ions on TEMPO-oxidized cellulose nanofibers in aqueous media[J]. Journal of Colloid and Interface Science, 2016, 464:175-182.
|
12 |
YAO C, WANG F, CAI Z, et al. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions[J]. RSC Advances, 2016, 6(95): 92648-92654.
|
13 |
YANG R, AUBRECHT K B, MA H Y, et al. Thiol-modified cellulose nanofibrous composite membranes for chromium (Ⅵ) and lead (Ⅱ) adsorption[J]. Polymer, 2014, 55(5): 1167-1176.
|
14 |
RONG L D, ZHU Z M, WANG B J, et al. Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions[J]. Cellulose, 2018, 25(5): 3025-3035.
|
15 |
GHANADPOUR M, CAROSIO F, LARSSON P T, et al. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials[J]. Biomacromolecules, 2015, 16(10): 3399-3410.
|
16 |
ILLY N, FACHE M, MÉNARD R, et al. Phosphorylation of bio-based compounds: the state of the art[J]. Polymer Chemistry, 2015, 6(35): 6257-6291.
|
17 |
SUFLET D M, CHITANU G C, POPA V I. Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose[J]. Reactive and Functional Polymers, 2006, 66(11): 1240-1249.
|
18 |
LEHTONEN J, HASSINEN J, KUMAR A A, et al. Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture[J]. Cellulose, 2020, 27(18): 10719-10732.
|
19 |
ABOU-ZEID R E, DACRORY S, ALI K A, et al. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution[J]. International Journal of Biological Macromolecules, 2018, 119: 207-214.
|
20 |
LIIMATAINEN H, SIRVIÖ J, PAJARI H, et al. Regeneration and recycling of aqueous periodate solution in dialdehyde cellulose production[J]. Journal of Wood Chemistry and Technology, 2013, 33(4): 258-266.
|
21 |
HOKKANEN S, REPO E, SUOPAJÄRVI T, et al. Adsorption of Ni(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3): 1471-1487.
|
22 |
HONG H J, YU H, PARK M, et al. Recovery of platinum from waste effluent using polyethyleneimine-modified nanocelluloses: effects of the cellulose source and type[J]. Carbohydrate Polymers, 2019, 210: 167-174.
|
23 |
TANG C X, BRODIE P, LI Y Z, et al. Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions[J]. Chemical Engineering Journal, 2020, 392: 124821.
|
24 |
HASANPOUR M, HATAMI M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study[J]. Advances in Colloid and Interface Science, 2020, 284: 102247.
|
25 |
JI Y, WEN Y Y, WANG Z, et al. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(Ⅱ) and organic pollutants removal[J]. Journal of Cleaner Production, 2020, 255: 120276.
|
26 |
HOKKANEN S, REPO E, BHATNAGAR A, et al. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose[J]. Environmental Technology, 2014, 35(18): 2334-2346.
|
27 |
KANG H L, LIU R G, HUANG Y. Graft modification of cellulose: methods, properties and applications[J]. Polymer, 2015, 70: A1-A16.
|
28 |
LUO Y W, WANG X G, LI B G, et al. Toward well-controlled ab initio RAFT emulsion polymerization of styrene mediated by 2-(((dodecylsulfanyl)carbonothioyl)sulfanyl) propanoic acid[J]. Macromolecules, 2011, 44(2): 221-229.
|
29 |
ANIRUDHAN T S, DEEPA J R, CHRISTA J. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(Ⅱ) from nuclear industry wastewater samples[J]. Journal of Colloid and Interface Science, 2016, 467: 307-320.
|
30 |
LI Z N, WU C J, ZHAO K, et al. Polydopamine-assisted synthesis of raspberry-like nanocomposite particles for superhydrophobic and superoleophilic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 80-91.
|
31 |
MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126: 199-207.
|
32 |
HUANG C F, CHEN J K, TSAI T Y, et al. Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP[J]. Polymer, 2015, 72: 395-405.
|
33 |
LIU P, BORRELL P F, BOŽIČ M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents[J]. Journal of Hazardous Materials, 2015, 294: 177-185.
|
34 |
HOKKANEN S, REPO E, SILLANPÄÄ M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose[J]. Chemical Engineering Journal, 2013, 223: 40-47.
|
35 |
CHOI H Y, BAE J H, HASEGAWA Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water[J]. Carbohydrate Polymers, 2020, 234: 115881.
|
36 |
SRIVASTAVA S, KARDAM A, RAJ K R. Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals[J]. International Journal of Green Nanotechnology, 2012, 4(1): 46-53.
|
37 |
SEHAQUI H, LARRAYA U P, LIU P, et al. Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment[J]. Cellulose, 2014, 21(4): 2831-2844.
|
38 |
ZHANG N, ZANG G L, SHI C, et al. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2016, 316: 11-18.
|
39 |
ZHU H X, JIA S R, WAN T, et al. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions[J]. Carbohydrate Polymers, 2011, 86(4): 1558-1564.
|
40 |
ZHANG X F, ZHAO J Q, CHENG L, et al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+ adsorption[J]. RSC Adv., 2014, 4(98): 55195-55201.
|
41 |
GENG B Y, WANG H Y, WU S, et al. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(Ⅱ) ions from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11715-11726.
|
42 |
ZHU C, LIU P, MATHEW A P. Self-assembled TEMPO cellulose nanofibers: graphene oxide-based biohybrids for water purification[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 21048-21058.
|
43 |
TANG J T, SONG Y, ZHAO F P, et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal[J]. Carbohydrate Polymers, 2019, 208: 404-412.
|
44 |
LI J, XU Z Y, WU W B, et al. Nanocellulose/poly(2-(dimethylamino)ethyl methacrylate) Interpenetrating polymer network hydrogels for removal of Pb(Ⅱ) and Cu(Ⅱ) ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 474-480.
|
45 |
SUOPAJÄRVI T, LIIMATAINEN H, KARJALAINEN M, et al. Lead adsorption with sulfonated wheat pulp nanocelluloses[J]. Journal of Water Process Engineering, 2015, 5: 136-142.
|
46 |
LEITNER J, HINTERSTOISSER B, WASTYN M, et al. Sugar beet cellulose nanofibril-reinforced composites[J]. Cellulose, 2007, 14(5): 419-425.
|
47 |
MA H Y, HSIAO B S, CHU B. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water[J]. ACS Macro Letters, 2012, 1(1): 213-216.
|
48 |
ZHANG D, XU W, CAI J, et al. Citric acid-incorporated cellulose nanofibrous mats as food materials-based biosorbent for removal of hexavalent chromium from aqueous solutions[J]. International Journal of Biological Macromolecules, 2020, 149: 459-466.
|
49 |
SIRVIÖ J A, HASA T, LEIVISKÄ T, et al. Bisphosphonate nanocellulose in the removal of vanadium(Ⅴ) from water[J]. Cellulose, 2016, 23(1): 689-697.
|
50 |
ZHOU Y M, FU S Y, ZHANG L L, et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(Ⅱ)[J]. Carbohydrate Polymers, 2014, 101: 75-82.
|
51 |
LUO Q Y, YUAN H M, ZHANG M, et al. A 3D porous fluorescent hydrogel based on amino-modified carbon dots with excellent sorption and sensing abilities for environmentally hazardous Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2021, 401: 123432.
|
52 |
LI Y Q, GUO C F, SHI R H, et al. Chitosan/ nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb(Ⅱ) ions from aqueous solution[J]. Carbohydrate Polymers, 2019, 223: 115048.
|
53 |
FIORATI A, GRASSI G, GRAZIANO A, et al. Eco-design of nanostructured cellulose sponges for sea-water decontamination from heavy metal ions[J]. Journal of Cleaner Production, 2020, 246: 119009.
|
54 |
QIAN Z C, WANG Z, ZHAO N, et al. Aerogels derived from polymer nanofibers and their applications[J]. Macromolecular Rapid Communications, 2018, 39(14): 1700724.
|
55 |
TANG C X, BRODIE P, BRUNSTING M, et al. Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal[J]. Carbohydrate Polymers, 2020, 242: 116397.
|
56 |
ZHU F, ZHENG Y M, ZHANG B G, et al. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment[J]. Journal of Hazardous Materials, 2021, 401: 123608.
|
57 |
ZHANG W Q, DUO H Q, LI S J, et al. An overview of the recent advances in functionalization biomass adsorbents for toxic metals removal[J]. Colloid and Interface Science Communications, 2020, 38: 100308.
|
58 |
MWAFY E A, MOSTAFA A M. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu(Ⅱ) from waste water[J]. Radiation Physics and Chemistry, 2020, 177: 109172.
|
59 |
MOHAMMED N, GRISHKEWICH N, TAM K C. Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes[J]. Environmental Science: Nano, 2018, 5(3): 623-658.
|
60 |
ABOUZEID R E, KHIARI R, EL-WAKIL N, et al. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment[J]. Biomacromolecules, 2019, 20(2): 573-597.
|
61 |
KARIM Z, CLAUDPIERRE S, GRAHN M, et al. Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture[J]. Journal of Membrane Science, 2016, 514: 418-428.
|