化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4894-4904.DOI: 10.16085/j.issn.1000-6613.2022-1898
收稿日期:
2022-10-13
修回日期:
2022-12-19
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
宋慧平
作者简介:
宋伟涛(1999—),男,硕士研究生,研究方向为超疏水涂层。E-mail:405136367@qq.com。
基金资助:
SONG Weitao(), SONG Huiping(), FAN Zhenlian, FAN Biao, XUE Fangbin
Received:
2022-10-13
Revised:
2022-12-19
Online:
2023-09-15
Published:
2023-09-28
Contact:
SONG Huiping
摘要:
生活中的腐蚀现象带来了许多安全隐患与经济损失,涂料防腐因其操作简单且效果显著而得到了广泛的应用。近年来,粉煤灰由于自身的结构以及优异的理化性质,作为一种防腐涂料中的填料物质引起了广泛的关注。粉煤灰的加入替代或部分替代了防腐涂料中的材料物质,大大降低了原材料的经济成本,提高了固废资源的利用率。本文结合粉煤灰的基本性质,从涂层的物理屏蔽效应、力学性能、电化学保护三个方面论述了其耐腐蚀性的原理,并阐明了粉煤灰在其中起到的作用。从制备涂层过程中使用的基料入手,将现阶段的粉煤灰防腐涂层分为三种主要类型:粉煤灰环氧树脂防腐涂层、粉煤灰硅酸盐防腐涂层、其他类型的粉煤灰防腐涂料。并对每种类型的涂料现有的研究进展和使用的粉煤灰的性质进行了总结和概括。粉煤灰用于防腐涂料的研究现阶段仍然停留在实验室规模,因为成本和工艺原因,难以实现大规模的工业化应用且存在性能单一、耐久性差的问题。因此开发低成本且具有自修复、自清洁和抗污染特性的粉煤灰防腐涂层是亟须解决的难题。
中图分类号:
宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904.
SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904.
密度 /g·cm-3 | 表观密度 /g·cm-3 | 密实度 /g·cm-3 | 原灰标准稠度 /% | 需水量 /% | 28d抗压强度比 /% |
---|---|---|---|---|---|
2.1 | 780 | 36.5 | 48.0 | 106 | 66 |
表1 粉煤灰的物理性质(平均值)[12]
密度 /g·cm-3 | 表观密度 /g·cm-3 | 密实度 /g·cm-3 | 原灰标准稠度 /% | 需水量 /% | 28d抗压强度比 /% |
---|---|---|---|---|---|
2.1 | 780 | 36.5 | 48.0 | 106 | 66 |
组分 | 组分的质量分数/% | |
---|---|---|
F类 | C类 | |
SiO2 | 41.60~60.00 | 33.00~43.65 |
Al2O3 | 17.74~29.45 | 19.39~23.14 |
Fe2O3 | 4.88~25.40 | 1.46~5.91 |
CaO | 1.25~9.30 | 21.80~27.66 |
MgO | 0.20~0.90 | 4.86~5.64 |
K2O | 1.9~2.79 | 0.47~2.08 |
Na2O | 0.36~0.88 | 1.38~3.70 |
LOI | 0.22~2.45 | 0.25~0.61 |
表2 粉煤灰的化学成分[13]
组分 | 组分的质量分数/% | |
---|---|---|
F类 | C类 | |
SiO2 | 41.60~60.00 | 33.00~43.65 |
Al2O3 | 17.74~29.45 | 19.39~23.14 |
Fe2O3 | 4.88~25.40 | 1.46~5.91 |
CaO | 1.25~9.30 | 21.80~27.66 |
MgO | 0.20~0.90 | 4.86~5.64 |
K2O | 1.9~2.79 | 0.47~2.08 |
Na2O | 0.36~0.88 | 1.38~3.70 |
LOI | 0.22~2.45 | 0.25~0.61 |
1 | 吴保意, 刘奥林, 张金梅, 等. 可溶性硅酸钠盐水溶液对金属腐蚀性分析[J]. 化工进展, 2020, 39(S2): 78-82. |
WU Baoyi, LIU Aolin, ZHANG Jinmei, et al. Corrosivity of soluble sodium silicate aqueous solution to metals[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 78-82. | |
2 | LIU Xiaoyan, Handuo JIE, LIU Ruidan, et al. Research on the preparation and anticorrosion properties of EP/CeO2-GO nanocomposite coating[J]. Polymers, 2021, 13(2): 183. |
3 | WANG Xiao, LI Yuan, LI Cheng, et al. Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments[J]. Corrosion Science, 2020, 176: 109049. |
4 | MARCEAUX Sandra, BRESSY Christine, PERRIN François-Xavier, et al. Development of polyorganosilazane–silicone marine coatings[J]. Progress in Organic Coatings, 2014, 77(11): 1919-1928. |
5 | 王杨松, 王英丹, 于帅, 等. 金属防腐及其防腐蚀措施的研究[J]. 辽宁化工, 2020, 49(3): 315-318. |
WANG Yangsong, WANG Yingdan, YU Shuai, et al. Research on metal corrosion prevention and corrosion prevention measures[J]. Liaoning Chemical Industry, 2020, 49(3): 315-318. | |
6 | 张海懿, 王萌. 防腐涂料的现状与进展[J]. 价值工程, 2018, 37(15): 262-264. |
ZHANG Haiyi, WANG Meng. Status and progress of anti-corrosion coating[J]. Value Engineering, 2018, 37(15): 262-264. | |
7 | 刘秋萍, 张凌燕, 邱杨率, 等. 石墨烯在防腐涂料中的应用进展[J]. 矿产保护与利用, 2020, 40(3): 153-160. |
LIU Qiuping, ZHANG Lingyan, QIU Yangshuai, et al. Application progress on graphene modified anti-corrosion coatings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 153-160. | |
8 | ARGYROPOULOS John, POPA Paul, SPILMAN Gary, et al. Seed oil based polyester polyols for coatings[J]. Journal of Coatings Technology and Research, 2009, 6(4): 501-508. |
9 | SAMBYAL Pradeep, RUHI Gazala, BHANDARI Hema, et al. Advanced anti corrosive properties of poly(aniline-co-o-toluidine)/flyash composite coatings[J]. Surface and Coatings Technology, 2015, 272: 129-140. |
10 | 饶辉凯, 曲茵, 程家运. 粉煤灰综合利用的建议[J]. 化工进展, 2011, 30(S1): 400-401. |
RAO Huikai, QU Yin, CHENG Jiayun. Advice of comprehensive utilization of fly ash[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 400-401. | |
11 | ZHUANG Xiao yu, CHEN Liang, KOMARNENI Sridhar, et al. Fly ash-based geopolymer: Clean production, properties and applications[J]. Journal of Cleaner Production, 2016, 125: 253-267. |
12 | 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2): 1-5. |
ZHANG Xiangcheng, MENG Yongbiao. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5. | |
13 | MATHAPATI Mahantayya, AMATE Krian, DURGA PRASAD C, et al. A review on fly ash utilization[J]. Materials Today: Proceedings,2022,50: 1535-1540. |
14 | 张力, 李星吾, 张元赏, 等. 粉煤灰综合利用进展及前景展望[J]. 建材发展导向, 2021, 19(24): 1-6. |
ZHANG Li, LI Xingwu, ZHANG Yuanshang, et al. Progress and Prospect of comprehensive utilization of fly ash [J]. Development Guide to Building Materials, 2021, 19(24): 1-6. | |
15 | 蒋雪萍, 王雪梅, 季宏兵. 粉煤灰的改性及应用研究进展[J]. 化工新型材料, 2021, 49(S1): 78-82, 87. |
JIANG Xueping, WANG Xuemei, JI Hongbing. Research progress on modification and application of flyash[J]. New Chemical Materials, 2021, 49(S1): 78-82, 87. | |
16 | PROMSAWAT Pongsakon, CHATVEERA Burachat, Gritsada SUA-IAM, et al. Properties of self-compacting concrete prepared with ternary Portland cement-high volume fly ash-calcium carbonate blends[J]. Case Studies in Construction Materials, 2020, 13: e00426. |
17 | 唐明秀, 宋慧平, 薛芳斌. 粉煤灰在涂料中的应用研究进展[J]. 洁净煤技术, 2020, 26(6): 23-33. |
TANG Mingxiu, SONG Huiping, XUE Fangbin. Research progress of application of fly ash in coatings[J]. Clean Coal Technology, 2020, 26(6): 23-33. | |
18 | 余子炎. 粉煤灰在火电厂防腐涂料填充剂的应用[J]. 全面腐蚀控制, 2020, 34(7): 85-89. |
YU Ziyan. Application of fly ash in the filler of anticorrosive coating in thermal power plant[J]. Total Corrosion Control, 2020, 34(7): 85-89. | |
19 | WANG Jintao, WANG Hongfei, GENG Guihong. Flame-retardant superhydrophobic coating derived from fly ash on polymeric foam for efficient oil/corrosive water and emulsion separation[J]. Journal of Colloid and Interface Science, 2018, 525: 11-20. |
20 | AGUIRRE-GUERRERO Ana María, ROBAYO-SALAZAR Rafael Andrés, DE GUTIÉRREZ Ruby Mejía. A novel geopolymer application: Coatings to protect reinforced concrete against corrosion[J]. Applied Clay Science, 2017, 135: 437-446. |
21 | JORGE S, DIAS-DA-COSTA D, JÚLIO E N B S. Influence of anti-corrosive coatings on the bond of steel rebars to repair mortars[J]. Engineering Structures, 2012, 36: 372-378. |
22 | Siva BÖHM. Graphene against corrosion[J]. Nature Nanotechnology, 2014, 9(10): 741-742. |
23 | 马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8): 4456-4462. |
MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4456-4462. | |
24 | 李俊虎, 常春, 陈群, 等. 环保型防腐颜料在涂料中的应用研究进展[J]. 化工进展, 2011, 30(S1): 217-221. |
LI Junhu, CHANG Chun, CHEN Qun, et al. Research progress and application of environment-friendly anti-rust pigments in coatings[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 217-221. | |
25 | ALEXANDER Shirin, EASTOE Julian, LORD Alex M, et al. Branched hydrocarbon low surface energy materials for superhydrophobic nanoparticle derived surfaces[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 660-666. |
26 | LI Jianchao, CHEN Ping, WANG Yuan. Tribological and corrosion performance of epoxy resin composite coatings reinforced with graphene oxide and fly ash cenospheres[J]. Journal of Applied Polymer Science, 2021, 138(11): 50042. |
27 | LI Jianchao, ZHENG Lifang, SHA Xiaohua, et al. Microstructural and mechanical characteristics of graphene oxide‐fly ash cenosphere hybrid reinforced epoxy resin composites[J]. Journal of Applied Polymer Science, 2020, 137(2): 47173. |
28 | HAMMER P, DOS SANTOS F C, CERRUTTI B M, et al. Carbon nanotube-reinforced siloxane-PMMA hybrid coatings with high corrosion resistance[J]. Progress in Organic Coatings, 2013, 76(4): 601-608. |
29 | MORE Aarti P, MHASKE Shashank T. Anticorrosive coating of polyesteramide resin by functionalized ZnO-Al2O3-Fly ash composite and functionalized multiwalled carbon nanotubes[J]. Progress in Organic Coatings, 2016, 99: 240-250. |
30 | DING Rui, ZHENG Yan, YU Haibin, et al. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings[J]. Journal of Alloys and Compounds, 2018, 748: 481-495. |
31 | RUHI Gazala, BHANDARI H, DHAWAN S. Corrosion resistant polypyrrole/flyash composite coatings designed for mild steel substrate[J]. American Journal of Polymer Science, 2015, 5(1A): 18-27. |
32 | 刘娴, 沈婷, 程欢. 环氧树脂防腐涂层的研究进展[J]. 塑料科技, 2021, 49(9): 96-100. |
LIU Xian, SHEN Ting, CHENG Huan. Research progress of epoxy resin anticorrosive coatings[J]. Plastics Science and Technology, 2021, 49(9): 96-100. | |
33 | 姚久提, 魏铭, 刘晓芳, 等. 氟硅改性无溶剂环氧涂料的制备与性能[J]. 化工进展, 2021, 40(8): 4421-4427. |
YAO Jiuti, WEI Ming, LIU Xiaofang, et al. Preparation and performance of solvent-free fluorine and silicone modified epoxy coatings[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4421-4427. | |
34 | ROSTAMI M, RASOULI S, RAMEZANZADEH B, et al. Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating[J]. Corrosion Science, 2014, 88: 387-399. |
35 | ZIAT Younes, HAMMI Maryama, ZARHRI Zakaryaa, et al.Epoxy coating modified with graphene: A promising composite against corrosion behavior of copper surface in marine media[J]. Journal of Alloys and Compounds, 2020, 820: 153380. |
36 | FAN Weihao, WANG Huaiyuan, WANG Chijia, et al. Epoxy coating capable of providing multi-component passive film for long-term anti-corrosion of steel[J]. Applied Surface Science, 2020, 521: 146417. |
37 | WANG Zihua, WANG Chijia, FAN Weihao, et al. A novel fly ash bifunctional filler for epoxy coating with long-term anti-corrosion performance under harsh conditions[J]. Chemical Engineering Journal, 2022, 430: 133164. |
38 | LI Jianchao, CHEN Ping, WANG Yuan, et al. Corrosion resistance of surface texturing epoxy resin coatings reinforced with fly ash cenospheres and multiwalled carbon nanotubes[J]. Progress in Organic Coatings, 2021, 158: 106388. |
39 | CHEN Ping, WANG Yuan, LI Jianchao, et al. Adhesion and erosion properties of epoxy resin composite coatings reinforced with fly ash cenospheres and short glass fibers[J]. Progress in Organic Coatings, 2018, 125: 489-499. |
40 | NORFATIMA ENGKU DAHALAN Engku, HELMI SOFIAN Azizul, ABDULLAH Arman, et al. Corrosion behavior of organic epoxy-xinc coating with fly ash as an extender pigment[J]. Materials Today: Proceedings, 2018, 5(10): 21629-21635. |
41 | 井新利, 郑茂盛. 溶胶-凝胶法制备有机改性硅酸盐的研究进展[J]. 化工进展, 1997, 16(5): 39-41. |
JING Xinli, ZHENG Maosheng. Progress in ormosil through Sol-gel technique[J]. Chemical Industry and Engineering Progress, 1997, 16(5): 39-41. | |
42 | 王政芳, 罗广建, 陈海生, 等. 无机硅酸盐涂料的研制及应用[J]. 广州化学, 2014, 39(3): 1-6. |
WANG Zhengfang, LUO Guangjian, CHEN Haisheng, et al. The preparation and application of inorganic silicate coating[J]. Guangzhou Chemistry, 2014, 39(3): 1-6. | |
43 | 苏威. 无机涂料及其发展[J]. 无机盐工业, 1985, 17(8): 1-5. |
SU Wei. Inorganic coatings and their development[J]. Inorganic Salt Industry, 1985(8): 1-5. | |
44 | ARIANPOUYA N, SHISHESAZ M, ARIANPOUYA M, et al. Evaluation of synergistic effect of nanozinc/nanoclay additives on the corrosion performance of zinc-rich polyurethane nanocomposite coatings using electrochemical properties and salt spray testing[J]. Surface and Coatings Technology, 2013, 216: 199-206. |
45 | GUPTA Rainy, BHARDWAJ Pooja, MISHRA Deepti, et al. Novel non-hydroxyl synthesis and fabrication of advanced hybrid inorganic-organic geopolymeric coating material for corrosion protection[J]. International Journal of Adhesion and Adhesives, 2021, 110: 102951. |
46 | CHENG Lihong, LUO Yang, MA Shuhua, et al. Corrosion resistance of inorganic zinc-rich coating reinforced by Ni-coated coal fly ash[J]. Journal of Alloys and Compounds, 2019, 786: 791-797. |
47 | TOMAR Akshay Singh, DESHMUKH Kumud, GUPTA Rainy, et al. Studies on fly ash based geopolymeric coating material compositions incorporated with TiO2 and Fe2O3 nanoparticles for mild steel[J]. Indian Journal of Chemical Technology, 2018, 25(5): 468-474. |
48 | DESHMUKH Kumud, PARSAI Richa, ANSHUL Avneesh, et al. Studies on fly ash based geopolymeric material for coating on mild steel by paint brush technique[J]. International Journal of Adhesion and Adhesives, 2017, 75: 139-144. |
49 | 刘竞, 苗同梦, 姜子清, 等. 混凝土表层防护涂料研究进展[J]. 化工进展, 2021, 40(10): 5615-5623. |
LIU Jing, MIAO Tongmeng, JIANG Ziqing, et al. Research progress of surface protection coatings for concrete[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5615-5623. | |
50 | LIU Jie, VIPULANANDAN C. Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack[J]. Tunnelling and Underground Space Technology, 2001,16(4): 311-321. |
51 | CHINDAPRASIRT Prinya, RATTANASAK Ubolluk. Improvement of durability of cement pipe with high calcium fly ash geopolymer covering[J]. Construction and Building Materials, 2016, 112: 956-961. |
52 | HARILAL Manu, GEORGE R P, ALBERT Shaju K, et al. A new ternary composite steel rebar coating for enhanced corrosion resistance in chloride environment[J]. Construction and Building Materials, 2022, 320: 126307. |
53 | ROBBY Divya Rachel, Nanda KUMAR T, HARILA Manu, et al. Enhanced corrosion protection of reinforcement steel with nanomaterial incorporated fly ash based cementitious coating[J]. Construction and Building Materials, 2021, 275: 122130. |
54 | Pradeep Kumar SOW, SINGHAL Richa, SAHOO Priyanka, et al. Fabricating low-cost, robust superhydrophobic coatings with re-entrant topology for self-cleaning, corrosion inhibition, and oil-water separation[J]. Journal of Colloid and Interface Science, 2021, 600: 358-372. |
55 | WANG Yingchun, PENG Shan, SHI Xiaomeng, et al. A fluorine-free method for fabricating multifunctional durable superhydrophobic fabrics[J]. Applied Surface Science, 2020, 505: 144621. |
[1] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[2] | 陈伟良, 高鑫, 李洪, 李鑫钢. 泡沫碳化硅波纹规整填料骨架结构对其传质性能的影响机理[J]. 化工进展, 2023, 42(5): 2289-2297. |
[3] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[4] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[5] | 池伟利, 杨宏. 厌氧氨氧化包埋填料处理稀土尾矿废水的中试脱氮和优化[J]. 化工进展, 2023, 42(1): 506-516. |
[6] | 田亚州, 胡钰婧, 李继友, 任江燕, 王立伟, 王修利, 丁颖, 程珏, 张军营. 香草醇基环氧树脂的合成、固化动力学及性能[J]. 化工进展, 2022, 41(S1): 477-484. |
[7] | 郭睿, 李平安, 赵云飞. 硅改性BPA-PA酚醛环氧树脂导电胶的合成及性能[J]. 化工进展, 2022, 41(8): 4473-4480. |
[8] | 郑琪, 张玉婷, 赵风清. 蒸压建材生产过程中钢渣安定性处理与活性化利用[J]. 化工进展, 2022, 41(7): 3983-3989. |
[9] | 韩红明, 从海峰, 李洪, 高鑫, 李鑫钢. 螺旋液桥降膜规整填料螺线间隙液桥形成与流动[J]. 化工进展, 2022, 41(2): 584-592. |
[10] | 姚久提, 魏铭, 刘晓芳, 胡可, 叶桐, 董群锋, 杨立峰. 氟硅改性无溶剂环氧涂料的制备与性能[J]. 化工进展, 2021, 40(8): 4421-4427. |
[11] | 马骏, 孙冬, 张明爽, 张兰河, 陈子成. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8): 4456-4462. |
[12] | 丁鑫, 高克昌, 郝二国, 韩艳辉, 吴亚朝, 焦纬洲, 刘有智. 超重力强化折点氯化法处理低浓度氨氮废水[J]. 化工进展, 2021, 40(7): 4083-4090. |
[13] | 马志斌, 张学里, 郭彦霞, 程芳琴. 循环流化床粉煤灰理化特性及元素溶出行为研究进展[J]. 化工进展, 2021, 40(6): 3058-3071. |
[14] | 王洪海, 尹依, 刘星, 魏斯文, 苏伟怡, 李春利. 载酶塑料填料的制备与优化[J]. 化工进展, 2021, 40(12): 6829-6838. |
[15] | 齐婷婷, 滕加伟, 史静, 初广文, 邹海魁, 罗勇, 张亮亮, 孙宝昌. 超重力预混+动态水热法制备ZSM-5分子筛——水热过程影响机制[J]. 化工进展, 2021, 40(11): 6228-6234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |