化工进展 ›› 2021, Vol. 40 ›› Issue (7): 4083-4090.DOI: 10.16085/j.issn.1000-6613.2020-1696
丁鑫1(), 高克昌1, 郝二国2, 韩艳辉2, 吴亚朝2, 焦纬洲1(
), 刘有智1
收稿日期:
2020-08-24
修回日期:
2020-09-18
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
焦纬洲
作者简介:
丁鑫(1995—),男,硕士研究生。 E-mail:基金资助:
DING Xin1(), GAO Kechang1, HAO Erguo2, HAN Yanhui2, WU Yazhao2, JIAO Weizhou1(
), LIU Youzhi1
Received:
2020-08-24
Revised:
2020-09-18
Online:
2021-07-06
Published:
2021-07-19
Contact:
JIAO Weizhou
摘要:
折点氯化法具有反应速度快、氨氮脱除率高等优点,广泛应用于氯碱等行业中,但反应过程中产生二氯胺致使废水中余氯浓度过高,无法满足离子膜法烧碱生产安全技术规定(HAB004—2002)。为解决这一问题,本文提出了超重力技术强化折点氯化法处理氨氮废水的新工艺,利用超重力技术强化传质的特点,实现次氯酸钠和氨氮的快速反应以及二氯胺的有效去除,研究了超重力因子(β)、氯氮比(Cl/N)、pH和液体流量QL等操作参数对氨氮脱除率和余氯的影响规律。研究结果表明,当Cl/N=11、β=30、pH=6~8和液体流量QL=80L/h时,氨氮去除率>95%,余氯浓度<1.5mg/L。与传统反应器相比,二氯胺去除效果明显,处理后的水中氨氮满足烧碱安全生产技术规定,此方法对于氯碱行业中低浓度氨氮的去除具有广阔的应用前景。
中图分类号:
丁鑫, 高克昌, 郝二国, 韩艳辉, 吴亚朝, 焦纬洲, 刘有智. 超重力强化折点氯化法处理低浓度氨氮废水[J]. 化工进展, 2021, 40(7): 4083-4090.
DING Xin, GAO Kechang, HAO Erguo, HAN Yanhui, WU Yazhao, JIAO Weizhou, LIU Youzhi. Treatment of low concentration ammonia nitrogen wastewater by high gravity enhanced breakpoint chlorination[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4083-4090.
设备参数 | 参数值 |
---|---|
转子外径 | 90mm |
转子内径 | 30mm |
转子高度 | 30mm |
填料密度 | 0.42g·cm-3 |
填料的孔隙率 | 0.41 |
表1 旋转填料床设备参数
设备参数 | 参数值 |
---|---|
转子外径 | 90mm |
转子内径 | 30mm |
转子高度 | 30mm |
填料密度 | 0.42g·cm-3 |
填料的孔隙率 | 0.41 |
反应器 | 一氯胺 | 二氯胺 | 游离余氯 | 总余氯 |
---|---|---|---|---|
搅拌反应器 | 0.18 | 2.63 | 5.61 | 8.42 |
鼓泡反应器 | 0.11 | 2.36 | 2.7 | 5.17 |
RPB | 0.12 | 0.997 | 0.063 | 1.18 |
表2 不同反应器中废水处理后的余氯种类及浓度 (mg·L-1)
反应器 | 一氯胺 | 二氯胺 | 游离余氯 | 总余氯 |
---|---|---|---|---|
搅拌反应器 | 0.18 | 2.63 | 5.61 | 8.42 |
鼓泡反应器 | 0.11 | 2.36 | 2.7 | 5.17 |
RPB | 0.12 | 0.997 | 0.063 | 1.18 |
1 | 钱前, 史玉龙, 杨红军, 等. 废水中氨氮脱除的技术概述[J]. 安徽化工, 2019, 45(6): 8-10, 17. |
QIAN Qian, SHI Yulong, YANG Hongjun, et al. Technical overview of treatment for high NH3-N wastewater[J]. Anhui Chemical Industry, 2019, 45(6): 8-10, 17. | |
2 | WU Zhenyu, ZHU Weiping, LIU Yang, et al. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen[J]. Chemosphere, 2020, 246: 125703. |
3 | 于小囡. 好氧颗粒污泥处理高氨氮废水及机理研究[D]. 上海: 复旦大学, 2013. |
YU Xiaonan. Treatment of high ammonia nitrogen wastewater by aerobic granular sludge and its mechanism[D]. Shanghai: Fudan University, 2013. | |
4 | 韩静. 高浓度氨氮废水的危害及主要治理技术[J]. 北方环境, 2011, 23(12): 120-122. |
HAN Jing. The dangers of high concentration ammonia nitrogen wastewater and wastewater treatment technology[J]. Northern Environment, 2011, 23(12): 120-122. | |
5 | 冯晓西, 乌锡康. 精细化工废水治理技术[M]. 北京: 化学工业出版社, 2000: 339. |
FENG Xiaoxi, WU Xikang. Treatment technology of fine chemical wastewater[M]. Beijing: Chemical Industry Press, 2000: 339. | |
6 | 王越, 程婧雯, 汪伯宁, 等. 微气泡曝气对模拟黑臭水体的治理效果[J]. 净水技术, 2018, 37(6): 108-112. |
WANG Yue, CHENG Jingwen, WANG Boning, et al. Effect of microbubble aeration on simulated black and odorous water body[J]. Water Purification Technology, 2018, 37(6): 108-112. | |
7 | 李家熙. 人体硒缺乏与过剩的地球化学环境特征及其预测[M]. 北京: 地质出版社, 2000: 103-105. |
LI Jiaxi. Prediction and geochemical environmental character of human selenium imbalances[M]. Beijing: Geological Press, 2000: 103-105. | |
8 | 陶长元, 刘作华, 范兴. 电解锰节能减排理论与工程应用[M]. 重庆: 重庆大学出版社, 2018: 76. |
TAO Changyuan,LIU Zuohua,FAN Xing. Theory and engineering application of energy saving and emission reduction of electrolytic manganese[M]. Chongqing: Chongqing University Press, 2018: 76. | |
9 | 李凯, 宁平, 梅毅. 化工行业大气污染控制[M]. 北京: 冶金工业出版社, 2016: 161-165. |
LI Kai, NING Ping,MEI Yi. Air pollution control in the chemical industry[M]. Beijing: Metallurgical Industry Press, 2016: 161-165. | |
10 | ZHU Lei, GUO Zhiyong, HUA Xiuyi, et al. Ammonia nitrogen removal from chlor-alkali chemical industry wastewater by magnesium ammonium phosphate precipitation method[J]. Advanced Materials Research, 2012, 573/574: 1096-1100. |
11 | YAN Yixin, GAO Jianlei, WU Jianping. Application of chemical precipitation in treating ammonia nitrogen from excess sludge liquor[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 204-208. |
12 | 罗小燕, 陈云嫩, 熊昌狮, 等. 稀土浸矿氨氮废水的吹脱试验研究[J]. 工业水处理, 2016, 36(2): 33-35, 39. |
LUO Xiaoyan, CHEN Yunnen, XIONG Changshi, et al. Experimental research on the air stripping method for the treatment of ammonia nitrogen wastewater in leaching rare earth[J]. Industrial Water Treatment, 2016, 36(2): 33-35, 39. | |
13 | LI Anfeng, NING Yanying, XU Wenjiang, et al. Air stripping of ammoniacal nitrogen from fecal sewage using a fluidized bed[J]. Advanced Materials Research, 2014, 926/927/928/929/930: 4209-4213. |
14 | ZHANG Wenlong, FU Rao, WANG Li, et al. Rapid removal of ammonia nitrogen in low-concentration from wastewater by amorphous sodium titanate nano-particles[J]. Science of the Total Environment, 2019, 668: 815-824. |
15 | 陈敬员, 余中山, 程燕. 离子交换法处理废水中的氨氮[J]. 上海化工, 2013, 38(5): 1-4. |
CHEN Jingyuan, YU Zhongshan, CHENG Yan. Treatment of ammonia-nitrogen in wastewater using ion exchange method[J]. Shanghai Chemical Industry, 2013, 38(5): 1-4. | |
16 | 王冠平, 方喜玲, 施汉昌, 等. 膜吸收法处理高氨氮废水的研究[J]. 环境污染治理技术与设备, 2002(7): 56-60. |
WANG Guanping, FANG Xiling, SHI Hanchang, et al. Study of membrane absorption-desorption process for the treatment of high strength ammonia wastewater[J]. Technigues and Equipment for Environmental Pollution Control, 2002(7): 56-60. | |
17 | MANSER Nathan D, WANG Meng, ERGAS Sarina J, et al. Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules[J]. Environmental Science & Technology Letters, 2016, 3(4): 175-179. |
18 | 姜镭. 氨氮废水处理技术比较[J]. 黑龙江环境通报, 2018, 42(1): 67-69. |
JIANG Lei. Comparison of treatment technologies of wastewater containing ammonia nitrogen[J]. Heilongjiang Environmental Journal, 2018, 42(1): 67-69. | |
19 | 赵贤广, 杨世慧, 陈方荣, 等. 吹脱法去除垃圾渗滤液中氨氮的技术进展[J]. 现代化工, 2019, 39(6): 80-84. |
ZHAO Xianguang, YANG Shihui, CHEN Fangrong, et al. Technical progress in removal of ammonia nitrogen from landfill leachate by air stripping[J]. Modern Chemical Industry, 2019, 39(6): 80-84. | |
20 | 刘有智, 张琳娜, 李裕, 等. 卤水提溴工艺中超重力空气吹出技术研究[J]. 现代化工, 2009, 29(8): 78-81. |
LIU Youzhi, ZHANG Linna, LI Yu, et al. Study on high gravity air stripping technology in the extraction of bromine from brine[J]. Modern Chemical Industry, 2009, 29(8): 78-81. | |
21 | 王媛媛, 李素芳, 徐翔, 等. 超重力法处理含氨废水技术[J]. 石油化工环境保护, 2006(4): 7-10, 67. |
WANG Yuanyuan, LI Sufang, XU Xiang, et al. The high-gravity technology for waste water ammonia removal[J]. Environmental Protection in Petrochemical Industry, 2006(4): 7-10, 67. | |
22 | CHEN Yihung, CHANG Chingyuan, SU Weiling, et al. Ozonation of Cl Reactive Black 5 using rotating packed bed and stirred tank reactor [J]. Journal of Chemical Technology & Biotechnology, 2005, 80(1): 68-75. |
23 | 郭亮. 超重力强化O3/H2O2氧化降解含硝基苯废水的研究[D]. 太原: 中北大学, 2015. |
GUO Liang. Degradation of nitrobenzene-containing wastewater by O3/H2O2 enhanced by high gravity[D]. Taiyuan: North University of China, 2015. | |
24 | CHANG Chiachi, CHIU Chunyu, CHANG Chingyuan, et al. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed[J]. Journal of Hazardous Materials, 2009, 168(2/3): 649-655. |
25 | GE Deming, ZENG Zequan, AROWO Moses, et al. Degradation of methyl orange by ozone in the presence of ferrous and persulfate ions in a rotating packed bed[J]. Chemosphere, 2016, 146: 413-418. |
26 | 李颖. 垃圾渗滤液处理技术及工程实例[M]. 北京: 中国环境科学出版社, 2008: 368-369. |
LI Ying. Landfill leachate treatment technology and engineering example[M]. Beijing: China Environment Science Press, 2008: 368-369. | |
27 | 王翔朴. 卫生学大辞典[M]. 北京: 华夏出版社, 1999: 45-46. |
WANG Xiangpiao. Hygienics dictionary[M]. Beijing: Huaxia Publishing House, 1999: 45-46. | |
28 | 孙锦宜. 含氮废水处理技术与应用[M]. 北京: 化学工业出版社, 2003:164-254. |
SUN Jinyi. Treatment technology and application of nitrogenous wastewater[M]. Beijing: Chemical Industry Press, 2003: 164-254. | |
29 | 宋卫锋, 骆定法, 王孝武, 等. 折点氯化法处理高NH3-N含钴废水试验与工程实践[J]. 环境工程, 2006, 24(5): 12-13. |
SONG Weifeng, LUO Dingfa, WANG Xiaowu, et al. Test and project practice on treatment of high NH3-N and Co containing wastewater with break point chlorination[J]. Environmental Engineering, 2006, 24(5): 12-13. | |
30 | 刘有智. 超重力化工过程与技术[M]. 北京: 国防工业出版社, 2009: 2-4. |
LIU Youzhi. Chemical engineering process and technology in high gravity[M]. Beijing: National Defense Industry Press, 2009: 2-4. | |
31 | 张军, 郭锴, 郭奋, 等. 旋转床内液体流动的实验研究[J]. 高校化学工程学报, 2000, 14(4): 378-381. |
ZHANG Jun, GUO Kai, GUO Fen, et al. Experimental study about flow of liquid in rotating packed bed[J]. Journal of Chemical Engineering of Chinese Universities, 2000, 14(4): 378-381. | |
32 | 俸志荣, 焦纬洲, 刘有智, 等. 超重力强化吹脱与O3/H2O2联合处理含高浓度硝基苯废水[J]. 含能材料, 2015, 23(6): 589-593. |
FENG Zhirong, JIAO Weizhou, LIU Youzhi, et al. Combined treatment of air stripping O3 and H2O2 oxidation for high concentration nitrobenzenecontaining wastewater enhanced by high gravity technology[J]. Chinese Journal of Energetic Materials, 2015, 23(6): 589-593. | |
33 | 周相武, 汪晓军, 刘姣, 等. 次氯酸钠溶液的氧化性研究[J]. 氯碱工业, 2006, 42(8): 28-30. |
ZHOU Xiangwu, WANG Xiaojun, LIU Jiao, et al. Studies on the oxidizing property of sodium hypochlorite solution[J]. Chlor Alkali-Industry, 2006, 42(8): 28-30. | |
34 | QIAO Jingjuan, LUO Shuai, YANG Peizhen, et al. Degradation of Nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 1-8. |
35 | 李航天. 逆流旋转填料床中液体的流动特性研究[D]. 太原: 中北大学, 2019. |
LI Hangtian. Study on flow characteristics of liquid in countercurrent rotating packed bed[D]. Taiyuan: North University of China, 2019. | |
36 | 宁方敏. 折点氯化法处理化工皂化污水中氨氮的实验研究[J]. 化工设计通讯, 2020, 46(5): 227,257. |
NING Fangmin. Experimental study on the treatment of ammonia nitrogen in saponification wastewater by break point chlorination[J]. Chemical Engineering Design Communications, 2020, 46(5): 227, 257. | |
37 | KIM Jinsu, LEE Jiyoung, CHOI Seung Kyu, et al. Nitrification of low concentration ammonia nitrogen using zeolite biological aerated filter (ZBAF)[J]. Environmental Engineering Research, 2020, 25(4): 554-560. |
[1] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[2] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[5] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[6] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[7] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[8] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[11] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[12] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 553
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |