化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 41-46.DOI: 10.16085/j.issn.1000-6613.2023-0274

• 化工过程与装备 • 上一篇    下一篇

甲醇水蒸气重整工艺的优化

许家珩1(), 李永胜1, 罗春欢1,2(), 苏庆泉1,2()   

  1. 1.北京科技大学能源与环境工程学院,北京 100083
    2.北京科技大学冶金工业节能减排北京市重点实验室,北京 100083
  • 收稿日期:2023-02-27 修回日期:2023-05-03 出版日期:2023-10-25 发布日期:2023-11-30
  • 通讯作者: 罗春欢,苏庆泉
  • 作者简介:许家珩(1998—),男,硕士研究生,研究方向为甲醇水蒸气重整制氢。E-mail:907300901@qq.com
  • 基金资助:
    中央高校基本科研业务费项目(FRF-BD-20-09A)

Optimization of methanol steam reforming process

XU Jiaheng1(), LI Yongsheng1, LUO Chunhuan1,2(), SU Qingquan1,2()   

  1. 1.School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2023-02-27 Revised:2023-05-03 Online:2023-10-25 Published:2023-11-30
  • Contact: LUO Chunhuan, SU Qingquan

摘要:

甲醇在常温常压下为液态且具有极高的载氢密度,因而是一种较为理想的载氢介质。甲醇重整反应器的设计对于甲醇在线重整制氢燃料电池系统的设计具有重要意义。对于甲醇重整反应器,反应温度较高时重整气中CO浓度高,不利于后续的CO深度脱除;而反应温度较低时,甲醇转化率与液相空速低,会导致催化剂利用率低并且反应器体积较大。基于以上问题,本工作提出了一种由第一段300℃下等温重整和第二段300℃~220℃下绝热重整组成的两段变温重整工艺。基于Aspen Plus对该工艺进行了模拟研究,证明该工艺在理论上可以实现。然后通过固定床反应器进行实验研究,结果表明在甲醇完全转化的条件下,本变温工艺的甲醇液相空速为4.08h-1,重整气中CO浓度为0.56%,重整制氢效率为108.98mL/(min·mL催化剂)。而220℃下等温重整工艺的液相空速为1.5h-1,重整气中CO浓度为0.40%,重整制氢效率为44.89mL/(min·mL催化剂)。变温工艺可以在较大的液相空速下获得更高的重整制氢效率,降低催化剂用量,使重整器结构更加紧凑。同时,与300℃下等温重整工艺相比,在相同液相空速下本变温工艺的CO浓度远低于300℃下的1.77%。因此,本文提出的两段工艺对于获得高制氢效率和低CO浓度具有重要意义。

关键词: 甲醇水蒸气重整, 两段重整工艺, 甲醇液相空速, 反应器, 固定床, 燃料电池

Abstract:

Methanol is an ideal hydrogen carrier because it keeps liquid state at normal temperature and pressure and has a very high hydrogen-carrying density. The design of methanol reforming reactors is important for the methanol online reforming system. For methanol reforming reactors, the CO concentration in reformate is high at high reaction temperatures that is not conducive to subsequent deep CO removal. But at low temperature, the low methanol conversion and liquid hourly space velocity (LHSV) s results in low catalyst utilization and large reactor volumes. Hence, a two-stage reforming process with the first isothermal section operating at 300℃ and the adiabatic second section working from 300℃ to 220℃, was proposed. A simulation study on Aspen Plus proved that the reactor was theoretically feasible. The experimental study was then carried out in a fixed bed reactor and the results showed that under conditions of complete methanol conversion, the methanol LHSV for this two-stage process was 4.08h-1, the CO concentration in reformate was 0.56% and the reforming hydrogen production efficiency was 108.98mL/(min·mL catalyst). The isothermal reforming process at 220℃ had a methanol LHSV of 1.5h-1, a CO concentration of 0.40% in reformate and a reforming hydrogen production efficiency of 44.89 mL/(min·mL catalyst). The two-stage process achieved higher reforming hydrogen production efficiency at higher LHSV, lower catalyst usage and a more compact reformer structure. At the same time, the CO concentration of this two-stage process was much lower than that of the isothermal reforming process at 300℃ (1.77% at 300℃) at the same LHSV. Therefore, the two-stage process proposed in this paper was of great importance to obtain high hydrogen production efficiency and low CO concentration.

Key words: methanol steam reforming, methanol liquid hourly space velocity, a two-stage reforming process, reactors, fixed-bed, fuel cells

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn