化工进展 ›› 2023, Vol. 42 ›› Issue (6): 2860-2873.DOI: 10.16085/j.issn.1000-6613.2022-1504
收稿日期:
2022-08-15
修回日期:
2022-11-24
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
李平
作者简介:
马哲杰(1995—),男,博士研究生,研究方向为燃料电池阴极催化层。E-mail:y20190088@mail.ecust.edu.cn。
基金资助:
MA Zhejie(), ZHANG Wenli, ZHAO Xuankai, LI Ping()
Received:
2022-08-15
Revised:
2022-11-24
Online:
2023-06-25
Published:
2023-06-29
Contact:
LI Ping
摘要:
质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)阴极催化层的氧传质阻力是限制高电流密度下低Pt载量膜电极极化性能的主要瓶颈。研究如何降低阴极催化层氧传质阻力对于提高PEMFC的性能、加快其商业化应用至关重要。本文首先分析了催化层氧传质阻力产生的根源及构成,指出氧气穿越气相、离聚物、Pt纳米粒子三相接触界面时产生的局部氧传质阻力是其重要部分;接着从Pt纳米粒子、离聚物、碳载体和水这四方面阐述了各因素对氧传质阻力特别是局部氧传质阻力的影响,归纳总结了降低氧传质阻力的方法;最后对低Pt载量PEMFC阴极催化层设计进行了展望,提出从构建适宜的载体孔结构、合理分布孔道内外Pt粒子数量、控制离聚物厚度及分布,以及强化水转移等方面着手,以降低氧传质阻力,提高电池在高电流密度下的功率输出。
中图分类号:
马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873.
MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873.
1 | KONGKANAND A, MATHIAS M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1127-1137. |
2 | OHMA Atsushi, MASHIO Tetsuya, SATO Kazuyuki, et al. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan[J]. Electrochimica Acta, 2011, 56(28): 10832-10841. |
3 | SASAKI K, WANG J X, NAOHARA H, et al. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores[J]. Electrochimica Acta, 2010, 55(8): 2645-2652. |
4 | GWAK Geonhui, LEE Jaeseung, GHASEMI Masoomeh, et al. Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13414-13427. |
5 | FAN Jiantao, CHEN Ming, ZHAO Zhiliang, et al. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells[J]. Nature Energy, 2021, 6: 475-486. |
6 | SAKAI Kei, SATO Kazuyuki, MASHIO Tetsuya, et al. Analysis of reactant gas transport in catalyst layers: Effect of Pt-loadings[J]. ECS Transactions, 2009, 25(1): 1193-1201. |
7 | NONOYAMA N, OKAZAKI S, WEBER A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells[J]. Journal of The Electrochemical Society, 2011, 158(4): B416. |
8 | OWEJAN J P, OWEJAN J E, GU W B. Impact of platinum loading and catalyst layer structure on PEMFC performance[J]. Journal of the Electrochemical Society, 2013, 160(8): F824-F833. |
9 | Yoshitake ONO, MASHIO Tstsuya, TAKAICHI Satoshi, et al. The analysis of performance loss with low platinum loaded cathode catalyst layers[J]. ECS Transactions, 2019, 28(27): 69-78. |
10 | Ákos KRISTON, XIE Tianyuan, GAMLIEL David, et al. Effect of ultra-low Pt loading on mass activity of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2013, 243: 958-963. |
11 | JOMORI Shinji, NONOYAMA Nobuaki, YOSHIDA Toshihiko. Analysis and modeling of PEMFC degradation: Effect on oxygen transport[J]. Journal of Power Sources, 2012, 215: 18-27. |
12 | LIANG Jiarong, LI Yinshi, WANG Rui, et al. Cross-dimensional model of the oxygen transport behavior in low-Pt proton exchange membrane fuel cells[J]. Chemical Engineering Journal, 2020, 400: 125796. |
13 | CHENG Xiaojing, SHEN Shuiyun, WEI Guanghua, et al. Perspectives on challenges and achievements in local oxygen transport of low Pt proton exchange membrane fuel cells[J]. Advanced Materials Technologies, 2022, 7(8): 2200228. |
14 | KUDO K, SUZUKI T, MORIMOTO Y. Analysis of oxygen dissolution rate from gas phase into nafion surface and development of an agglomerate model[J]. ECS Transactions, 2010, 33(1): 1495-1502. |
15 | SHEN Shuiyun, CHENG Xiaojing, WANG Chao, et al. Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs)[J]. Physical Chemistry Chemical Physics, 2017, 19(38): 26221-26229. |
16 | OGUMI Z, TAKEHARA Z, YOSHIZAWA S. Gas permeation in SPE method: I. Oxygen permeation through nafion and NEOSEPTA[J]. Journal of the Electrochemical Society, 1984, 131(4): 769-773. |
17 | OGUMI Z, KUROE T, TAKEHARA Z I. Gas permeation in SPE method: II. Oxygen and hydrogen permeation through nafion[J]. Journal of the Electrochemical Society, 2019, 132(11): 2601-2605. |
18 | WATANABE Masahiro, IGARASHI Hiroshi, YOSIOKA Koji. An experimental prediction of the preparation condition of Nafion-coated catalyst layers for PEFCs[J]. Electrochimica Acta, 1995, 40(3): 329-334. |
19 | CHEN Darcy, KONGKANAND Anusorn, JORNE Jacob. Proton conduction and oxygen diffusion in ultra-thin nafion films in PEM fuel cell: How thin?[J]. Journal of the Electrochemical Society, 2019, 166(2): F24-F33. |
20 | MASHIO Tstsuya, MALEK Kourash, EIKERLING Michael, et al. Molecular dynamics study of ionomer and water adsorption at carbon support materials[J]. The Journal of Physical Chemistry C, 2010, 114(32): 13739-13745. |
21 | YAN Xiaohui, XU Zhiling, YUAN Shu, et al. Structural and transport properties of ultrathin perfluorosulfonic acid ionomer film in proton exchange membrane fuel cell catalyst layer: A review[J]. Journal of Power Sources, 2022, 536: 231523. |
22 | KURIHARA Yuya, MABUCHI Takuya, TOKUMASU Takashi. Molecular simulation of oxygen permeation through ionomer in catalyst layer[J]. ECS Transactions, 2014, 64(3): 559-565. |
23 | SUGAYA Yuta, TOKUMASU Takashi. Molecular dynamics study of oxygen permeation of ionomer of hydrocarbon[J]. ECS Transactions, 2013, 58(1): 1165-1174. |
24 | JINNOUCHI Ryosuke, KUDO Kenji, KITANO Naoki, et al. Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface[J]. Electrochimica Acta, 2016, 188: 767-776. |
25 | RAMASWAMY N, GU W B, ZIEGELBAUER J M, et al. Carbon support microstructure impact on high current density transport resistances in PEMFC cathode[J]. Journal of The Electrochemical Society, 2020, 167(6): 64515. |
26 | Yoshitaka ONO, OHMA Atsushi, SHINOHARA Kazuhiko, et al. Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers[J]. Journal of the Electrochemical Society, 2013, 160(8): F779-F787. |
27 | CHOWDHURY Anamika, BIRD Ashley, LIU Jiangjin, et al. Linking perfluorosulfonic acid ionomer chemistry and high-current density performance in fuel-cell electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42579-42589. |
28 | LOPEZ-HARO M, GUÉTAZ L, PRINTEMPS T, et al. Three-dimensional analysis of Nafion layers in fuel cell electrodes[J]. Nature Communications, 2014, 5(1): 5229. |
29 | XIE J, XU F, WOOD D L, et al. Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies[J]. Electrochimica Acta, 2010, 55(24): 7404-7412. |
30 | TAKAHASHI Shinichi, MASHIO Tetsuya, HORIBE Norifumi, et al. Analysis of the microstructure formation process and its influence on the performance of polymer electrolyte fuel-cell catalyst layers[J]. ChemElectroChem, 2015, 2(10): 1560-1567. |
31 | SHINOZAKI Kazuma, YAMADA Haruhiko, MORIMOTO Yu. Relative humidity dependence of Pt utilization in polymer electrolyte fuel cell electrodes: Effects of electrode thickness, ionomer-to-carbon ratio, ionomer equivalent weight, and carbon support[J]. Journal of the Electrochemical Society, 2011, 158(5): B467. |
32 | YARLAGADDA V, CARPENTER M K, MOYLAN T E, et al. Boosting fuel cell performance with accessible carbon mesopores[J]. ACS Energy Letters, 2018, 3(3): 618-621. |
33 | IDEN Hiroshi, MASHIO Tetsuya, OHMA Atsushi. Gas transport inside and outside carbon supports of catalyst layers for PEM fuel cells[J]. Journal of Electroanalytical Chemistry, 2013, 708: 87-94. |
34 | WANG Chao, CHENG Xiaojing, LU Jiabin, et al. The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(23): 5848-5852. |
35 | WANG Chao, CHENG Xiaojing, YAN Xiaohui, et al. Respective influence of ionomer content on local and bulk oxygen transport resistance in the catalyst layer of PEMFCs with low Pt loading[J]. Journal of the Electrochemical Society, 2019, 166(4): F239-F245. |
36 | INOUE Gen, YOKOYAMA Kouji, OOYAMA Junpei, et al. Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components[J]. Journal of Power Sources, 2016, 327: 610-621. |
37 | PARK Y C, TOKIWA H, KAKINUMA K, et al. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 315: 179-191. |
38 | CHENG Xiaojing, WEI Guanghua, WANG Chao, et al. Experimental probing of effects of carbon support on bulk and local oxygen transport resistance in ultra-low Pt PEMFCs[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120549. |
39 | SUN Xinye, YU Hongmei, ZHOU Li, et al. Influence of platinum dispersity on oxygen transport resistance and performance in PEMFC[J]. Electrochimica Acta, 2020, 332: 135474. |
40 | MASHIO Tetsuya, IDEN Hiroshi, OHMA Atsushi, et al. Modeling of local gas transport in catalyst layers of PEM fuel cells[J]. Journal of Electroanalytical Chemistry, 2017, 790: 27-39. |
41 | CHIAVAZZO Eliodoro, FASANO Matteo, ASINARI Pietro, et al. Scaling behaviour for the water transport in nanoconfined geometries[J]. Nature Communications, 2014, 5(1): 3565. |
42 | WANG X X, SWIHART M T, WU G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019, 2(7): 578-589. |
43 | ZHANG Hanguang, HWANG Sooyeon, WANG Maoyu, et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149. |
44 | YE Yifan, CAI Fan, LI Haobo, et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction[J]. Nano Energy, 2017, 38: 281-289. |
45 | WAN Xin, LIU Xiaofang, LI Yongcheng, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019, 2(3): 259-268. |
46 | 杨博龙, 韩清, 向中华. 质子交换膜燃料电池膜电极结构与设计研究进展[J]. 化工进展, 2021, 40(9): 4882-4893. |
YANG Bolong, HAN Qing, XIANG Zhonghua. Progress of membrane electrode structure and its design for proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4882-4893. | |
47 | BYEON A, LEE K J, LEE M J, et al. Effect of Catalyst pore size on the performance of non-precious Fe/N/C-based electrocatalysts for high-temperature polymer electrolyte membrane fuel cells[J]. ChemElectroChem, 2018, 5(14): 1805-1810. |
48 | HARZER G S, ORFANIDI A, EL-SAYED H, et al. Tailoring catalyst morphology towards high performance for low Pt loaded PEMFC cathodes[J]. Journal of the Electrochemical Society, 2018, 165(10): F770-F779. |
49 | UCHIDA M, PARK Y C, KAKINUMA K, et al. Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11236-11247. |
50 | YANO Hiroshi, KATAOKA Mikihiro, YAMASHITA Hisao, et al. Oxygen reduction activity of carbon-supported Pt-M (M=V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method[J]. Langmuir, 2007, 23(11): 6438-6445. |
51 | WATANABE M, TRYK D A, WAKISAKA M, et al. Overview of recent developments in oxygen reduction electrocatalysis[J]. Electrochimica Acta, 2012, 84: 187-201. |
52 | YE Licheng, GAO Yuan, ZHU Shiyao, et al. A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7241-7245. |
53 | LIU Shengchu, HUA Shiyang, LIN Rui, et al. Improving the performance and durability of low Pt-loaded MEAs by adjusting the distribution positions of Pt particles in cathode catalyst layer[J]. Energy, 2022, 253: 124201. |
54 | YARLAGADDA V, RAMASWAMY N, KUKREJA R S, et al. Ordered mesoporous carbon supported fuel cell cathode catalyst for improved oxygen transport[J]. Journal of Power Sources, 2022, 532: 231349. |
55 | WANG Shunzhong, LI Xiaohui, WAN Zhaohui, et al. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 379: 338-343. |
56 | WAN Zhaohui, LIU Sufen, ZHONG Qing, et al. Mechanism of improving oxygen transport resistance of polytetrafluoroethylene in catalyst layer for polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7456-7464. |
57 | TALUKDAR K, RIPAN M A, JAHNKE T, et al. Experimental and numerical study on catalyst layer of polymer electrolyte membrane fuel cell prepared with diverse drying methods[J]. Journal of Power Sources, 2020, 461: 228169. |
58 | ORFANIDI A, MADKIKAR P, EL-SAYED H A, et al. The key to high performance low Pt loaded electrodes[J]. Journal of the Electrochemical Society, 2017, 164(4): F418-F426. |
59 | Sebastian OTT, ORFANIDI Alin, SCHMIES Henrike, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19(1): 77-85. |
60 | XING L, SHI W D, DAS P K, et al. Inhomogeneous distribution of platinum and ionomer in the porous cathode to maximize the performance of a PEM fuel cell[J]. AIChE Journal, 2017, 63(11): 4895-4910. |
61 | SONG Datong, WANG Qianpu, LIU Zhongsheng, et al. A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells[J]. Electrochimica Acta, 2005, 50(16): 3347-3358. |
62 | CHENG Xiaojing, YOU Jiabin, SHEN Shuiyun, et al. An ingenious design of nanoporous nafion film for enhancing the local oxygen transport in cathode catalyst layers of PEMFCs[J]. Chemical Engineering Journal, 2022, 439: 135387. |
63 | CHENG Xiaojing, WANG Chao, WEI Guanghua, et al. Insight into the effect of pore-forming on oxygen transport behavior in ultra-low Pt PEMFCs[J]. Journal of the Electrochemical Society, 2019, 166(14): F1055-F1061. |
64 | GUAN Shumeng, ZHOU Fen, TAN Jinting, et al. Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs[J]. Progress in Natural Science: Materials International, 2020, 30(6): 839-845. |
65 | DOO G, YUK S, LEE J H, et al. Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs[J]. Journal of Materials Chemistry A, 2020, 8(26): 13004-13013. |
66 | YAKOVLEV Y V, LOBKO Y V, VOROKHTA M, et al. Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 490: 229531. |
67 | YANG Liu, FU Kaihao, JIN Xisheng, et al. Catalyst layer design with inhomogeneous distribution of platinum and ionomer optimal for proton exchange membrane fuel cell cold-start[J]. Chemical Engineering Science, 2022, 263: 118132. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[7] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[8] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[11] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[12] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[13] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
[14] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[15] | 陈伟良, 高鑫, 李洪, 李鑫钢. 泡沫碳化硅波纹规整填料骨架结构对其传质性能的影响机理[J]. 化工进展, 2023, 42(5): 2289-2297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |