1 |
李春利, 李东川, 李景玉. 新型气相分配器对隔板填料塔性能的影响[J]. 化工进展, 2019, 38(8): 3583-3588.
|
|
LI Chunli, LI Dongchuan, LI Jingyu. Effect of new vapor splitter on performance for dividing wall packing column[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3583-3588.
|
2 |
刘春江, 卜孟庄, 郭凯, 等. 基于实验与CFD方法的Winpak填料混合性能研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(1): 1-9.
|
|
LIU Chunjiang, BU Mengzhuang, GUO Kai, et al. Computational fluid dynamics simulation and experimental study of mixing performance of winpak packing[J]. Journal of Tianjin University (Science and Technology), 2021, 54(1): 1-9.
|
3 |
谭丽媛, 袁希钢, KALBASSI Mohammad Ali. 规整填料结构对液相分布影响的计算流体力学[J]. 化工进展, 2015, 34(11): 3869-3878.
|
|
TAN Liyuan, YUAN Xigang, KALBASSI Mohammad Ali. Effect of structured packing’s structure on liquid distribution by computational fluid dynamics[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3869-3878.
|
4 |
SPIEGEL L, MEIER W. Distillation columns with structured packings in the next decade[J]. Chemical Engineering Research and Design, 2003, 81(1): 39-47.
|
5 |
张超, 师旭军, 张国珍, 等. 弹性填料对ABR去除重金属及颗粒污泥的影响[J]. 化工进展, 2020, 39(7): 2858-2866.
|
|
ZHANG Chao, SHI Xujun, ZHANG Guozhen, et al. Effect of elastic filler on heavy metals removal and granular sludge by ABR[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2858-2866.
|
6 |
MANH T D, NAM N D, BABAZADEH H, et al. Characterization of new wire gauze-structured packing: experimental study[J]. Chemical Engineering & Technology, 2020, 43(12): 2469-2476.
|
7 |
HASSANVAND A, ESMAEILI-FARAJ S H, MOGHADDAM M S, et al. Characterization of a new structured packing by computational fluid dynamics[J]. Chemical Engineering & Technology, 2021, 44(1): 156-163.
|
8 |
HATTORI K, ISHIKAWA M, MORI Y H. Strings of liquid beads for gas-liquid contact operations[J]. AIChE Journal, 1994, 40(12): 1983-1992.
|
9 |
CHINJU H, UCHIYAMA K, MORI Y H. “String-of-beads” flow of liquids on vertical wires for gas absorption[J]. AIChE Journal, 2000, 46(5): 937-945.
|
10 |
MIGITA H, SOGA K, MORI Y H. Gas absorption in a wetted-wire column[J]. AIChE Journal, 2005, 51(8): 2190-2198.
|
11 |
GRÜNIG J, KIM S J, KRAUME M. Liquid film flow on structured wires: fluid dynamics and gas-side mass transfer[J]. AIChE Journal, 2013, 59(1): 295-302.
|
12 |
KOMAE N, SATO, MORI Y H. Helical liquid flow on a vertical cylinder and its application to gas absorption[J]. AIChE Journal, 2013, 59(8): 3109-3118.
|
13 |
GRÜNIG J, LYAGIN E, HORN S, et al. Mass transfer characteristics of liquid films flowing down a vertical wire in a counter current gas flow[J]. Chemical Engineering Science, 2012, 69(1): 329-339.
|
14 |
GRÜNIG J, SKALE T, KRAUME M. Liquid flow on a vertical wire in a countercurrent gas flow[J]. Chemical Engineering Journal, 2010, 164(1): 121-131.
|
15 |
XIA G D, CAI B, CHENG L X, et al. Experimental study and modelling of average void fraction of gas-liquid two-phase flow in a helically coiled rectangular channel[J]. Experimental Thermal and Fluid Science, 2018, 94: 9-22.
|
16 |
CONG H F, ZHAO Z Y, LI X G, et al. Liquid-bridge flow in the channel of helical string and its application to gas-liquid contacting process[J]. AIChE Journal, 2018, 64(9): 3360-3368.
|
17 |
SUN X S, SAKAI M. A liquid bridge model for spherical particles applicable to asymmetric configurations[J]. Chemical Engineering Science, 2018, 182: 28-43.
|