1 |
ALBERGARIA J T, MARTINS F G, ALVIM-FERRAZ M C M, et al. Multiple linear regression and artificial neural networks to predict time and efficiency of soil vapor extraction[J]. Water, Air, & Soil Pollution, 2014, 225(8): 1-9.
|
2 |
MEMARIAN A, VARANASI S K, HUANG B. Mixture robust semi-supervised probabilistic principal component regression with missing input data[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 214: 104315.
|
3 |
SUGIYAMA M, IDÉ T, NAKAJIMA S, et al. Semi-supervised local Fisher discriminant analysis for dimensionality reduction[J]. Machine Learning, 2010, 78(1/2): 35-61.
|
4 |
KANEKO H, ARAKAWA M, FUNATSU K. Erratum for “development of a new regression analysis method using independent component analysis”[J]. Journal of Chemical Information and Modeling, 2013, 53(11): 3113.
|
5 |
ADEBIYI O A, CORRIPIO A B. Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes[J]. Computers & Chemical Engineering, 2003, 27(2): 143-155.
|
6 |
WILSON D J H, IRWIN G W, LIGHTBODY G. Nonlinear PLS using radial basis functions[J]. Transactions of the Institute of Measurement and Control, 1997, 19(4): 211-220.
|
7 |
XIE Y, ZHANG Y W, JIA Q L, et al. Fault detection based on probabilistic kernel partial least square regression for industrial processes[J]. Journal of Chemical Engineering of Japan, 2018, 51(1): 89-99.
|
8 |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
|
9 |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
|
10 |
ZHANG W, LI C H, PENG G L, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2018, 100: 439-453.
|
11 |
HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53: 42-50.
|
12 |
FUKUSHIMA K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202.
|
13 |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
|
14 |
KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. 2014: arXiv: 1412.6980 [cs.LG].
|
15 |
ZEILER M D. ADADELTA: an adaptive learning rate method[EB/OL]. 2012: arXiv: 1212.5701[cs.LG].
|
16 |
DAUPHIN Y N, DE VRIES H, CHUNG J, et al. RMSProp and equilibrated adaptive learning rates for non-convex optimization[EB/OL]. 2015: arXiv: 1502.04390[cs.LG].
|
17 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
18 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
|
19 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 2818-2826.
|
20 |
CHAKRABARTY S, HABETS E A P. Multi-speaker DOA estimation using deep convolutional networks trained with noise signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(1): 8-21.
|
21 |
BATHELT A, RICKER N L, JELALI M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314.
|
22 |
ZHANG Y W, TENG Y D, ZHANG Y. Complex process quality prediction using modified kernel partial least squares[J]. Chemical Engineering Science, 2010, 65(6): 2153-2158.
|