化工进展 ›› 2022, Vol. 41 ›› Issue (2): 593-600.DOI: 10.16085/j.issn.1000-6613.2021-0611

• 化工过程与装备 • 上一篇    下一篇

具有输入数据注意力机制的卷积神经网络用于氟化工产品质量预测

李欣铜1,2(), 陈志冰3, 魏志强4, 李苏桐4, 陈旭1, 宋凯1()   

  1. 1.天津大学化工学院,天津 300350
    2.航天长征化学工程股份有限公司,北京 100176
    3.巨化清安检测科技有限公司,浙江 衢州 324004
    4.巨化股份有限公司,浙江 衢州 324004
  • 收稿日期:2021-03-26 修回日期:2021-08-10 出版日期:2022-02-05 发布日期:2022-02-23
  • 通讯作者: 宋凯
  • 作者简介:李欣铜(1995—),男,硕士研究生,研究方向为先进控制。E-mail:3014207218@tju.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFC0808600)

Convolution neural network with attention mechanism of input data for quality prediction of fluorine chemical products

LI Xintong1,2(), CHEN Zhibing3, WEI Zhiqiang4, LI Sutong4, CHEN Xu1, SONG Kai1()   

  1. 1.School of Chemical Engineering, Tianjin University, Tianjin 300350, China
    2.Changzheng Engineering Co. , Ltd. , Beijing 100176, China
    3.Zhejiang Juhua Qing’an Testing Technology Co. , Ltd. , Quzhou 324004, Zhejiang, China
    4.Zhejiang Juhua Co. , Ltd. , Quzhou 324004, Zhejiang, China
  • Received:2021-03-26 Revised:2021-08-10 Online:2022-02-05 Published:2022-02-23
  • Contact: SONG Kai

摘要:

在氟化工等复杂的化工过程中,具有不同时间尺度的时变特性同时存在并作用于系统运行。这类复杂的强时变特性严重制约着各种先进控制策略的广泛应用。为了克服关键质量变量测量滞后所带来的不利因素,进一步提高氟化工过程先进控制系统的控制精度,本文提出了一种具有输入数据注意力机制的卷积神经网络(ACNN)并用于产品质量预测。通过引入注意力机制自适应地提取不同时间跨度输入数据的时间特性,来克服常规卷积神经网络因输入数据窗口固定而无法充分利用各类时变尺度特性的弊端,从而更为精准地提取氟化工过程复杂的强时变特性,更加准确地预测产品质量,辅助工业生产。应用氟化工过程真实数据和TE(Tennessee Eastman)模拟数据验证了方法的有效性和泛化性,结果表明对于强时变或同时具有长时间跨度的漂移波动而言,ACNN的质量预测模型具有更高的可靠性。

关键词: 注意力机制, 卷积神经网络, 氟化工过程, 质量预测

Abstract:

For a complicated chemical process, i.e. the fluorochemical process, the simultaneous existence of the time-varying processes with different time characteristics makes regular machine learning methods unable to predict product quality precisely. In this study, a convolutional neural network with attention mechanism of input data (ACNN) was proposed to improve the prediction of the product quality. By introducing the adaptive attention mechanism on input data at different-time span, this method can simultaneously extract the characteristics of time-varying processes. Therefore, it can overcome the abovementioned drawbacks of the regular convolution neural network. This advantage allows the possibility for ACNN to accurately extract the features of strong and complicated time-varying fluorine chemical process, and to further precisely predict the quality of products to improve the performance of the industrial control system. The performance of ACNN was strongly proved by the application in quality prediction of the fluorine chemical process located in East China. The application of it in the TE (Tennessee Eastman) benchmark also proved its generalization in the applications on other chemical processes. The results showed that the accuracy of ACNN was higher for strong time-varying or long time-span fluctuations as compared to the conventional methods.

Key words: attention mechanism, convolution neural network, fluorochemical process, quality prediction

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn