1 |
KISS A A, JOBSON M, GAO X. Reactive distillation: stepping up to the next level of process intensification[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5909-5918.
|
2 |
WANG H H, DUAN B X, LI H, et al. PEGylation and macroporous carrier adsorption enabled long-term enzymatic transesterification[J]. New Journal of Chemistry, 2020, 44(8): 3463-3470.
|
3 |
WIERSCHEM M, WALZ O, MITSOS A, et al. Enzyme kinetics for the transesterification of ethyl butyrate with enzyme beads, coated packing and ultrasound assistance[J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 25-34.
|
4 |
ZHANG X, WAN X H, CAO H, et al. Chemo-enzymatic epoxidation of Sapindus mukurossi fatty acids catalyzed with Candida sp. 99-125 lipase in a solvent-free system[J]. Industrial Crops and Products, 2017, 98: 10-18.
|
5 |
王清莲, 王晓达, 王红星, 等. 酶反应精馏耦合技术研究进展[J]. 化工学报, 2020, 71(1): 122-137.
|
|
WANG Qinglian, WANG Xiaoda, WANG Hongxing, et al. Recent developments in enzymatic reactive distillation coupling technology[J]. CIESC Journal, 2020, 71(1): 122-137.
|
6 |
WAN D W, TIAN L, LI X, et al. A versatile strategy for enzyme immobilization: fabricating lipase/inorganic hybrid nanostructures on macroporous resins with enhanced catalytic properties[J]. Biochemical Engineering Journal, 2018, 139: 101-108.
|
7 |
SEN S, PUSKAS J E. Green polymer chemistry: enzyme catalysis for polymer functionalization[J]. Molecules, 2015, 20(5): 9358-9379.
|
8 |
JIANG Y J, LIU H, WANG L H, et al. Virus-like organosilica nanoparticles for lipase immobilization: characterization and biocatalytic applications[J]. Biochemical Engineering Journal, 2019, 144: 125-134.
|
9 |
ASMAT S, HUSAIN Q. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: sterling stability and application[J]. Materials Science and Engineering C, 2019, 99: 25-36.
|
10 |
SHELDON R A, PELT S VAN. Enzyme immobilisation in biocatalysis: why, what and how[J]. Chemical Society Reviews, 2013, 42(15): 6223-6235.
|
11 |
MOAZENI F, CHEN Y C, ZHANG G S. Enzymatic transesterification for biodiesel production from used cooking oil, a review[J]. Journal of Cleaner Production, 2019, 216: 117-128.
|
12 |
单盼娣, 张敬一, 张永刚, 等. 固定化脂肪酶的制备和表征[J]. 化工进展, 2011, 30(S1): 285-287.
|
|
SHAN Pandi, ZHANG Jingyi, ZHANG Yongang, et al. Preparation and characterization of the immobilized lipase[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 285-287.
|
13 |
GILL I, BALLESTEROS A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: an efficient and generic approach[J]. Journal of the American Chemical Society, 1998, 120(34): 8587-8598.
|
14 |
HEILS R, SONT A, BUBENHEIM P, et al. Integration of enzymatic catalysts in a reactive distillation column with structured packings[J]. Industrial & Engineering Chemistry Research, 2012, 51(35): 11482-11489.
|
15 |
YAGONIA C F J, PARK K, YOO Y J. Immobilization of Candida Antarctica lipase B on the surface of modified sol-gel matrix[J]. Journal of Sol-Gel Science and Technology, 2014, 69(3): 564-570.
|
16 |
KAPPERT E J, PAVLENKO D, MALZBENDER J, et al. Formation and prevention of fractures in sol-gel-derived thin films[J]. Soft Matter, 2015, 11(5): 882-888.
|
17 |
MARTIN L S, CERON A, OLIVEIRA P C, et al. Different organic components on silica hybrid matrices modulate the lipase inhibition by the glycerol formed in continuous transesterification reactions[J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 462-470.
|
18 |
彭洪根, 李正林, 薛屏. 溶胶-凝胶包埋固定化酶的研究[J]. 应用化工, 2008, 37(11): 1372-1375.
|
|
PENG Honggen, LI Zhenglin, XUE Ping. Study of immobilization of enzymes by sol-gel encapsulation[J]. Applied Chemical Industry, 2008, 37(11): 1372-1375.
|
19 |
CHEN J P, LIN W S. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis[J]. Enzyme and Microbial Technology, 2003, 32(7): 801-811.
|
20 |
LEHNER M, HOFFMANN K, GEIPEL W. Hydrodynamic and mass transfer characteristic of a novel grid-structured plastic packing[J]. Heat and Mass Transfer, 2011, 47(8): 1035-1041.
|
21 |
周凯, 刘勇. 改性煤矸石制备聚丙烯塑料填料[J]. 塑料, 2015, 44(1): 69-71, 76.
|
|
ZHOU Kai, LIU Yong. Preparation of polypropylene filled by modified coal gangue[J]. Plastics, 2015, 44(1): 69-71, 76.
|
22 |
王洪海, 李旭, 李春利, 等. 固定化酶催化制备乙酸正丁酯及动力学[J]. 化工学报, 2017, 68(12): 4685-4690.
|
|
WANG Honghai, LI Xu, LI Chunli, et al. Kinetics of n-butyl acetate prepared by immobilized enzyme[J]. CIESC Journal, 2017, 68(12): 4685-4690.
|
23 |
WANG H H, LIU W J, GAO L Y, et al. Synthesis of n-butyl acetate via reactive distillation column using Candida Antarctica lipase as catalyst[J]. Bioprocess and Biosystems Engineering, 2020, 43(4): 593-604.
|
24 |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
|
25 |
KUMAR A, PUJAR R, GUPTA N, et al. Stress modulation in desiccating crack networks for producing effective templates for patterning metal network based transparent conductors[J]. Applied Physics Letters, 2017, 111(1): 013502.
|
26 |
HU Y, JIANG X J, WU S W, et al. Synthesis of vitamin E succinate by interfacial activated Candida rugosa lipase encapsulated in sol-gel materials[J]. Chinese Journal of Catalysis, 2013, 34(8): 1608-1616.
|
27 |
MACARIO A, MOLINER M, CORMA A, et al. Increasing stability and productivity of lipase enzyme by encapsulation in a porous organic-inorganic system[J]. Microporous and Mesoporous Materials, 2009, 118(1/2/3): 334-340.
|
28 |
SOARES C M, SANTOS O A DOS, DE CASTRO H F, et al. Studies on immobilized lipase in hydrophobic sol-gel[J]. Applied Biochemistry and Biotechnology, 2004, 113/114/115/116: 307-319.
|
29 |
YANG G, WU J P, XU G, et al. Improvement of catalytic properties of lipase from Arthrobacter sp. by encapsulation in hydrophobic sol-gel materials[J]. Bioresource Technology, 2009, 100(19): 4311-4316.
|
30 |
SOHRABI N, RASOULI N, TORKZADEH M. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles[J]. Chemical Engineering Journal, 2014, 240: 426-433.
|
31 |
NIU Z W, HE X Y, HUANG T, et al. A facile preparation of transparent methyltriethoxysilane based silica xerogel monoliths at ambient pressure drying[J]. Microporous and Mesoporous Materials, 2019, 286: 98-104.
|
32 |
BARHOUM M, MORRILL J M, RIASSETTO D, et al. Rapid sol-gel fabrication of high-quality thin-film stacks on planar and curved substrates[J]. Chemistry of Materials, 2011, 23(23): 5177-5184.
|
33 |
HE X L, YIN J H, YANG Z Q, et al. Damage mechanism analysis of carbon fiber composites under compressive load[J]. Key Engineering Materials, 2018, 775: 36-42.
|
34 |
HE X Y, CHENG X, ZHANG Y, et al. Multiscale structural characterization of methyltriethoxysilane-based silica aerogels[J]. Journal of Materials Science, 2018, 53(2): 994-1004.
|
35 |
HAZIR E, KOC K H, BARAY S A, et al. Improvement of adhesion strength for wood-based material coating process using design of experiment methodology[J]. European Journal of Wood and Wood Products, 2020, 78(2): 301-312.
|
36 |
WANG H H, LU Y F, LIANG J, et al. Improvement of adhesion properties of enzyme-loaded coating on random packing in transesterification[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(3): :393-400.
|
37 |
ZHANG D, DENG M F, CAO H B, et al. Laccase immobilized on magnetic nanoparticles by dopamine polymerization for 4-chlorophenol removal[J]. Green Energy & Environment, 2017, 2(4): 393-400.
|
38 |
HOU C, QI Z G, ZHU H. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization[J]. Colloids and Surfaces B: Biointerfaces, 2015, 128: 544-551.
|
39 |
IYER P V, ANANTHANARAYAN L. Enzyme stability and stabilization—Aqueous and non-aqueous environment[J]. Process Biochemistry, 2008, 43(10): 1019-1032.
|
40 |
SURESHKUMAR M, LEE C K. Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization[J]. Carbohydrate Polymers, 2011, 84(2): 775-780.
|