1 |
ALBAHAR M , LI C Z , ZHOLOBENKO V L , et al . The effect of ZSM-5 zeolite crystal size on p-xylene selectivity in toluene disproportionation[J]. Microporous and Mesoporous Materials, 2020, 302: 110221.
|
2 |
QUAN Y H , LI S Y , WANG S , et al . Synthesis of chainlike ZSM-5 zeolites: determination of synthesis parameters, mechanism of chainlike morphology formation, and their performance in selective adsorption of xylene isomers[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14899-14910.
|
3 |
CORMA A . From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chemical Reviews, 1997, 97(6): 2373-2420.
|
4 |
TUKUR N M , AL-KHATTAF S . Comparison studies of xylene isomerization and disproportionation reactions between SSZ-33, TNU-9, mordenite and ZSM-5 zeolite catalysts[J]. Chemical Engineering Journal, 2011, 166(1): 348-357.
|
5 |
YIN X , SUN Q , WANG D , et al . High-gravity-assisted synthesis of aqueous nanodispersions of organic fluorescent dyes for counterfeit labeling[J]. AIChE Journal, 2019, 65(10): DOI:10.1002/aic.16714.
|
6 |
SUN Q , CHEN B , WU X , et al . Preparation of transparent suspension of lamellar magnesium hydroxide nanocrystals using a high-gravity reactive precipitation combined with surface modification[J]. Industrial & Engineering Chemistry Research, 2015, 54(2): 666-671.
|
7 |
ZHENG X H , CHU G W , KONG D J , et al . Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing[J]. Chemical Engineering Journal, 2016, 285: 236-242.
|
8 |
CHEN J F , WANG Y H , GUO F , et al . Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation[J]. Industrial & Engineering Chemistry Research, 2000, 39(4): 948-954.
|
9 |
GUO K , ZHANG Z Z , LUO H J , et al . An innovative approach of the effective mass transfer area in the rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 4052-4058.
|
10 |
RAO D P , BHOWAL A , GOSWAMI P S . Process intensification in rotating packed beds (HIGEE): an appraisal[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 1150-1162.
|
11 |
康英英 . 超重力-水热法合成纳米ZSM-5分子筛[D]. 北京: 北京化工大学, 2018.
|
|
KANG Yingying . Hydrothermal synthesis of nano zeolite ZSM-5 with premixing in a rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 2018.
|
12 |
成尚元, 刘有智, 祁贵生 . 超重力技术制备多级孔ZSM-5分子筛[J]. 化工进展, 2017, 36(2): 588-594.
|
|
CHENG Shangyuan , LIU Youzhi , QI Guisheng . Synthesis of hierarchical ZSM-5 zeolite by high gravity technology[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 588-594.
|
13 |
LIU C Y , KONG D J , GUO H C . The morphology control of zeolite ZSM-5 by regulating the polymerization degree of silicon and aluminum sources[J]. Microporous and Mesoporous Materials, 2014, 193: 61-68.
|
14 |
LIU B Y , LI C , REN Y Q , et al . Direct synthesis of mesoporous ZSM-5 zeolite by a dual-functional surfactant approach[J]. Chemical Engineering Journal, 2012, 210: 96-102.
|
15 |
XING A H , YUAN D L , TIAN D Y , et al . Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction[J]. Microporous and Mesoporous Materials, 2019, 288: 109562.
|
16 |
RODRÍGUEZ-GONZÁLEZ L , HERMES F , BERTMER M , et al . The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Applied Catalysis A: General, 2007, 328(2): 174-182.
|
17 |
ZHOU Y N , LIU H Y , RAO X R , et al . Controlled synthesis of ZSM-5 zeolite with an unusual Al distribution in framework from natural aluminosilicate mineral[J]. Microporous and Mesoporous Materials, 2020, 305: 110357.
|