化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3489-3500.DOI: 10.16085/j.issn.1000-6613.2022-1590
收稿日期:
2022-08-29
修回日期:
2022-11-05
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
韩伟
作者简介:
韩恒文(1973—),男,硕士,高级工程师,主要从事石油加工和产品开发工作。E-mail:hanhw.ripp@sinopec.com。
HAN Hengwen(), HAN Wei(), LI Mingfeng
Received:
2022-08-29
Revised:
2022-11-05
Online:
2023-07-15
Published:
2023-08-14
Contact:
HAN Wei
摘要:
综合介绍了多种烯烃水合反应的机理、生产工艺及催化剂的研究成果。分类详细归纳了环己烯、丙烯、高碳烯烃等通过水合反应生产相应产物醇的生产工艺和催化剂的最新研究进展,并分析了烯烃水合技术的未来发展趋势。分析发现:烯烃水合反应的路径主要分为直接路径和间接路径;其反应机理主要有马氏规则的亲电加成机理、反马氏规则的亲电加成机理、自由基反应机理等;烯烃水合反应用催化剂从液体酸、碱,过渡金属盐或氧盐,不断向分子筛、固体酸、合成树脂、光催化剂、酶催化剂方向发展。未来,光催化和生物酶催化是烯烃水合科技研究的重点方向;而反应设备参数优化、提升催化剂性能、强化物料混合效果、改善传质过程等,则是烯烃水合生产工艺优化的发展趋势。
中图分类号:
韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500.
HAN Hengwen, HAN Wei, LI Mingfeng. Research progress in olefin hydration process and the catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3489-3500.
烯烃水合方法 | 催化剂 | 反应机理 | 合成产物 | 优点/缺点 |
---|---|---|---|---|
强酸水解 | 硫酸 | 马氏规则亲电加成、直接路径 | 乙醇、异丙醇等,长链则为仲、叔醇 | 简单、廉价/腐蚀、易重排生成仲醇 |
过渡金属催化烯烃水合反应 | 过渡金属(钯)盐 | 反马氏规则、直接路径 | 苯乙醇 | 特定醇的合成/过程复杂、催化剂昂贵 |
酸酯化-水解 | 硫酸、三氯化铝、固体酸、合成树脂 | 马氏规则亲电加成、间接路径 | 异丙醇、环己醇等 | 过程较复杂、消耗蒸汽、腐蚀严重、副产物多 |
硼氢化-氧化水解 | 双氧水、碱 | 反马氏规则、间接路径(硼烷化、氧化水解) | 伯醇 | 原子利用率高,不宜重排/环境影响大 |
烯烃串联羟基化 | 乙腈、乙酸钾 | 自由基-极性反应 | 芳基醇 | 需加热、碱催化受限制 |
光催化烯烃水合 | 光,二苯二硫醚(Ph-S-S-Ph) | 反马氏规则、自由基(争议) | 伯醇、仲醇、叠氮醇 | 原料易得、方法简单/难控制、催化剂贵、需氢供体 |
酶催化烯烃水合 | 丙氨酸磷酸核糖醇连接酶 | 反马氏规则 | 芳香基取代醇 | 条件温和、转化率高,绿色无污染 |
表1 不同烯烃水合方法的催化剂和工艺特点
烯烃水合方法 | 催化剂 | 反应机理 | 合成产物 | 优点/缺点 |
---|---|---|---|---|
强酸水解 | 硫酸 | 马氏规则亲电加成、直接路径 | 乙醇、异丙醇等,长链则为仲、叔醇 | 简单、廉价/腐蚀、易重排生成仲醇 |
过渡金属催化烯烃水合反应 | 过渡金属(钯)盐 | 反马氏规则、直接路径 | 苯乙醇 | 特定醇的合成/过程复杂、催化剂昂贵 |
酸酯化-水解 | 硫酸、三氯化铝、固体酸、合成树脂 | 马氏规则亲电加成、间接路径 | 异丙醇、环己醇等 | 过程较复杂、消耗蒸汽、腐蚀严重、副产物多 |
硼氢化-氧化水解 | 双氧水、碱 | 反马氏规则、间接路径(硼烷化、氧化水解) | 伯醇 | 原子利用率高,不宜重排/环境影响大 |
烯烃串联羟基化 | 乙腈、乙酸钾 | 自由基-极性反应 | 芳基醇 | 需加热、碱催化受限制 |
光催化烯烃水合 | 光,二苯二硫醚(Ph-S-S-Ph) | 反马氏规则、自由基(争议) | 伯醇、仲醇、叠氮醇 | 原料易得、方法简单/难控制、催化剂贵、需氢供体 |
酶催化烯烃水合 | 丙氨酸磷酸核糖醇连接酶 | 反马氏规则 | 芳香基取代醇 | 条件温和、转化率高,绿色无污染 |
工艺 | 公司 | 国家 | 年份 | 催化剂 |
---|---|---|---|---|
均相催化环己烯水合工艺 | 菲利普石油公司 | 美国 | 1974 | 硫酸、苯磺酸 |
非均相催化环己烯水合工艺 | 杜邦 | 美国 | 1980 | 全氟磺酸树脂 |
苯-环己烯-环己醇工艺 | 旭化成集团 | 日本 | 1990 | Ru/HZSM-5 |
引进旭化成工艺+改进工艺 | 神马集团 | 中国 | 1998 | Ru/HZSM-5 |
表2 工业上环己烯水合工艺和催化剂的发展
工艺 | 公司 | 国家 | 年份 | 催化剂 |
---|---|---|---|---|
均相催化环己烯水合工艺 | 菲利普石油公司 | 美国 | 1974 | 硫酸、苯磺酸 |
非均相催化环己烯水合工艺 | 杜邦 | 美国 | 1980 | 全氟磺酸树脂 |
苯-环己烯-环己醇工艺 | 旭化成集团 | 日本 | 1990 | Ru/HZSM-5 |
引进旭化成工艺+改进工艺 | 神马集团 | 中国 | 1998 | Ru/HZSM-5 |
项目 | 维巴工艺 | 德山曹达工艺 | 德士古工艺 |
---|---|---|---|
反应条件 | |||
反应物相态 | 气相 | 液相 | 气液混合相 |
催化剂种类 | 固体磷酸 | 钨、钼系杂多酸 | 阳离子交换树脂 |
反应压力/MPa | 2.0~2.5 | 20.5~25.0 | 6.0~8.0 |
反应温度/℃ | 180~260 | 240~280 | 130~160 |
丙烯纯度(φ)/% | ≥99 | 95 | 92 |
水/烯摩尔比 | 0.6~0.8 | 25.0~27.0 | 12.5~15.0 |
反应结果 | |||
丙烯单程转化率/% | 5~6 | 50~75 | 60~70 |
异丙醇选择性/% | 98~99 | 92~96 | 98~99 |
设备腐蚀程度 | 较严重 | 无 | 无 |
催化剂稳定性 | 磷酸流失 | 非常好 | 不耐高温 |
催化剂寿命 | >12个月 | 半永久性 | >8个月 |
表3 3种丙烯直接水合工艺的比较[2]
项目 | 维巴工艺 | 德山曹达工艺 | 德士古工艺 |
---|---|---|---|
反应条件 | |||
反应物相态 | 气相 | 液相 | 气液混合相 |
催化剂种类 | 固体磷酸 | 钨、钼系杂多酸 | 阳离子交换树脂 |
反应压力/MPa | 2.0~2.5 | 20.5~25.0 | 6.0~8.0 |
反应温度/℃ | 180~260 | 240~280 | 130~160 |
丙烯纯度(φ)/% | ≥99 | 95 | 92 |
水/烯摩尔比 | 0.6~0.8 | 25.0~27.0 | 12.5~15.0 |
反应结果 | |||
丙烯单程转化率/% | 5~6 | 50~75 | 60~70 |
异丙醇选择性/% | 98~99 | 92~96 | 98~99 |
设备腐蚀程度 | 较严重 | 无 | 无 |
催化剂稳定性 | 磷酸流失 | 非常好 | 不耐高温 |
催化剂寿命 | >12个月 | 半永久性 | >8个月 |
催化剂类别 | 丙烯转化率/% | 异丙醇选择性/% |
---|---|---|
Y | 10 | 99 |
ZSM-5 | 12.8 | 100 |
Md | 10.6 | 99 |
MCM-41 | 5.6 | 100 |
β | 32.4 | 99.8 |
表4 不同分子筛催化丙烯直接水合反应结果[61]
催化剂类别 | 丙烯转化率/% | 异丙醇选择性/% |
---|---|---|
Y | 10 | 99 |
ZSM-5 | 12.8 | 100 |
Md | 10.6 | 99 |
MCM-41 | 5.6 | 100 |
β | 32.4 | 99.8 |
1 | 李淑娟. 环己烯间接水合与直接水合法制备环己醇过程研究[D]. 湘潭: 湘潭大学, 2020. |
LI Shujuan. Study on the preparation of cyclohexanol by direct hydration and indirect hydration of cyclohexene[D]. Xiangtan: Xiangtan University, 2020. | |
2 | 孙梦垚. 丙烯水合制异丙醇催化剂的研究[D]. 大连: 大连理工大学, 2016. |
SUN Mengyao. Investigation on catalysts for hydration of propene to isopropanol[D]. Dalian: Dalian University of Technology, 2016. | |
3 | 乔凯, 吕连海, 翟庆铜, 等. 丙烯催化水合制异丙醇工艺研究[J]. 当代化工, 2006, 35(5): 303-306. |
QIAO Kai, Lianhai LYU, ZHAI Qingtong, et al. Study on catalytic hydration of propylene to isopropanol[J]. Contemporary Chemical Industry, 2006, 35(5): 303-306. | |
4 | DONG Guangbin, TEO P, WICKENS Z K, et al. Primary alcohols from terminal olefins: Formal anti-Markovnikov hydration via triple relay catalysis[J]. Science, 2011, 333(6049): 1609-1612. |
5 | SMITH M B. March's advanced organic chemistry: Reactions, mechanisms, and structure[M]. 7th ed. Wiley: New York, 2013. |
6 | KINDT S, WICHT K, HEINRICH M R. Thermally induced carbohydroxylation of styrenes with aryldiazonium salts[J]. Angewandte Chemie International Edition, 2016, 55(30): 8744-8747. |
7 | HU Xia, ZHANG Guoting, BU Faxiang, et al. Visible-light-mediated anti-Markovnikov hydration of olefins[J]. ACS Catalysis, 2017, 7(2): 1432-1437. |
8 | YANG Bo, LU Zhan. Visible-light-promoted metal-free aerobic hydroxyazidation of alkenes[J]. ACS Catalysis, 2017, 7(12): 8362-8365. |
9 | HAMMER S C, KUBIK G, WATKINS E, et al. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis[J]. Science, 2017, 358(6360): 215-218. |
10 | DEMMING R M, HAMMER S C, NESTL B M, et al. Asymmetric enzymatic hydration of unactivated, aliphatic alkenes[J]. Angewandte Chemie International Edition, 2019, 58(1): 173-177. |
11 | 林晖, 陈红歌, 唐燕红, 等. 一种烯烃水合酶在制备伯醇中的应用:CN201911214183.6[P]. 2020-02-21. |
LIN Hui, CHEN Hongge, TANG Yanhong, et al. Application of olefin hydratase in preparation of primary alcohol: CN201911214183.6 [P]. 2020-02-21. | |
12 | 王殿中, 舒兴田, 何鸣元. 环己烯水合制备环己醇的研究Ⅰ. 分子筛结构及晶粒大小的影响[J]. 催化学报, 2002, 23(6): 503-506. |
WANG Dianzhong, SHU Xingtian, HE Mingyuan. Studies on production of cyclohexanol by hydration of cyclohexeneⅠ. Effects of zeolite structure and crystal size[J]. Chinese Journal of Catalysis, 2002, 23(6): 503-506. | |
13 | 姚旭婷. 失活钛硅分子筛催化环己烯水合反应的研究[D]. 上海: 华东师范大学, 2018. |
YAO Xuting. Deactivated titanosilicate zeolite as an efficient catalyst for liquid-phase hydration of cyclohexene[D]. Shanghai: East China Normal University, 2018. | |
14 | YAO Xuting, HUANG Xin, LIN Yuxia, et al. Deactivated TS-1 as efficient catalyst for hydration of cyclohexene to cyclohexanol[J]. Acta Chimica Sinica, 2020, 78(10): 1111-1119. |
15 | SUN Wenchang, ZHANG Xu, HOU Yueming, et al. Polystyrene-based hierarchically macro-mesoporous solid acid: A robust and highly efficient catalyst for indirect hydration of cyclohexene to cyclohexanol by a one-pot method under mild conditions[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6435-6444. |
16 | 吴克. 改性分子筛固载磷钨钼杂多酸催化剂的制备及性能研究[D]. 通辽: 内蒙古民族大学, 2020. |
WU Ke. Study on preparation and performance of H3PW12- n Mo n O34 heteropoly acid supported on modified zeolite[D]. Tongliao: Inner Mongolia University for the Nationalities, 2020. | |
17 | 刘昭宇, 朱浩天, 卢明达, 等. 有机阳离子修饰的Strandberg型钼磷酸盐的合成、催化性能[J]. 应用化学, 2015, 32(2): 214-220. |
LIU Zhaoyu, ZHU Haotian, LU Mingda, et al. Synthesis and catalytic activity of a strandberg-type molybdophosphate modified by organic cations[J]. Chinese Journal of Applied Chemistry, 2015, 32(2): 214-220. | |
18 | SALVADOR V T, SILVA E S, GONÇALVES P G C, et al. Biomass transformation: Hydration and isomerization reactions of turpentine oil using ion exchange resins as catalyst[J]. Sustainable Chemistry and Pharmacy, 2020, 15: 100214. |
19 | BIANCHINI E, PIETROBON L, RONCHIN L, et al. Trifluoroacetic acid promoted hydration of styrene catalyzed by sulfonic resins: Comparison of the reactivity of styrene, n-hexene and cyclohexene[J]. Applied Catalysis A: General, 2019, 570: 130-138. |
20 | 霍稳周, 魏晓霞, 田丹, 等. 一种低碳烯烃水合工艺: CN104591961A[P]. 2015-05-06. |
HUO Wenzhou, WEI Xiaoxia, TIAN Dan, et al. A low carbon olefin hydration process: CN104591961A[P]. 2015-05-06. | |
21 | 周峰, 马会霞,姜睿,等. 一种烯烃水合反应方法: CN114507116A[P]. 2022-05-17. |
ZHOU Feng, MA Huixia, JIANG Rui, et al. A method of olefin hydration reaction: CN114507116A[P]. 2022-05-17. | |
22 | 袁清,毛俊义,黄涛,等. 一种烯烃水合反应方法和系统: CN112723989A[P]. 2021-04-30. |
YUAN Qing, MAO Junyi, HUANG Tao, et al. An olefin hydration reaction method and system: CN112723989A[P]. 2021-04-30. | |
23 | 李星. 异丙醇的生产技术及市场分析[J]. 山东化工, 2021, 50(11): 79-81. |
LI Xing. Production technology and market analysis of isopropanol[J]. Shandong Chemical Industry, 2021, 50(11): 79-81. | |
24 | 单祥雷. 环己烯水合制备环己醇催化反应过程的研究[D]. 上海: 华东理工大学, 2011. |
SHAN Xianglei. Study on catalytic reaction process for synthesis of cyclohexanol from hydration of cyclohexene[D]. Shanghai: East China University of Science and Technology, 2011. | |
25 | LI Jing, YANG Lihong, LI Fang, et al. Hydration of cyclohexene to cyclohexanol over SO3H-functionalized imidazole ionic liquids[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(1): 173-183. |
26 | 房承宣, 于泳, 王亚涛, 等. 环己烯水合催化剂及工艺研究进展[J]. 现代化工, 2012, 32(12): 16-19. |
FANG Chengxuan, YU Yong, WANG Yatao, et al. Research progress of catalyst and process in cyclohexene hydration[J]. Modern Chemical Industry, 2012, 32(12): 16-19. | |
27 | 李一鸣. 环己烯直接水合相关基础研究及工艺开发[D]. 福州:福州大学,2020. |
LI Yiming. Basic research and process development of cyclohexene direct hydration[D]. Fuzhou: Fuzhou University,2020. | |
28 | 谢小雨. 生物质碳基固体酸催化剂上环己烯水合制备环己醇工艺研究[D]. 杭州:浙江大学,2021. |
XIE Xiaoyu. Preparation of cyclohexanol by hydration of cyclohexene on biomass-carbon based solid catalysts[D]. Hangzhou: Zhejiang University, 2021. | |
29 | 朱林. (类)离子液体在催化环己烯水合反应中的应用[D]. 天津: 河北工业大学, 2020. |
ZHU Lin. Application of (pesudo) ionic liquid in catalyzing hydration of cycloexene[D]. Tianjin: Hebei University of Technology, 2020. | |
30 | FUKUHARA H, MATSUNAGA F, KOBAYASHI M. Preparation of cycloalkanols by catalytic hydration of cycloalkenes: JP1990040334A[P]. 1990-02-09. |
31 | 林清香. 环己烯催化水合制备环己醇研究[D]. 杭州: 浙江大学, 2008. |
LIN Qingxiang. Study on the preparation of cyclohexanol by catalysis hydration of cyclohexene[D]. Hangzhou: Zhejiang University, 2008. | |
32 | 申武, 林清香, 朱明乔. 环己烯水合制环己醇研究进展[J]. 合成纤维工业, 2009, 32(2): 45-47. |
SHEN Wu, LIN Qingxiang, ZHU Mingqiao. Research progress in cyclohexene hydration to cyclohexanol[J]. China Synthetic Fiber Industry, 2009, 32(2): 45-47. | |
33 | U·穆勒尔, T·希尔, J·恒克勒曼, 等. 由烯烃生产醇的方法: CN1399621[P]. 2003-02-26. |
ULRICH M, THOMAS H, JOCHEM H, et al. Method for producing an alcohol from an alkene: CN1399621[P]. 2003-02-26. | |
34 | 刘小熙. ZSM-5催化剂作用下环己烯水合制环己醇反应过程实验研究[D]. 石家庄: 河北科技大学, 2019. |
LIU Xiaoxi. Experimental study on hydration process of cyclohexene to cyclohexanol with ZSM-5 catalysts[D]. Shijiazhuang: Hebei University of Science and Technology, 2019. | |
35 | TIAN Hui, LIU Shuai, HAN Yaochi, et al. Acid treatment to adjust zeolite hydrophobicity for olefin hydration reaction[J]. Journal of Porous Materials, 2022, 29(3): 713-722. |
36 | 王明明, 姚志龙, 赵如松. 磷改性HZSM-5分子筛催化环己烯水合反应活性[J]. 工业催化, 2011, 19(2): 40-45. |
WANG Mingming, YAO Zhilong, ZHAO Rusong. Catalytic activity of phosphorus-modified-HZSM-5 zeolites on cyclohexene hydration[J]. Industrial Catalysis, 2011, 19(2): 40-45. | |
37 | JIN Yuzhen, ZONG Lukuan, WANG Xiangyu, et al. Catalytic enhancement of cyclohexene hydration by Ga-Doped ZSM-5 zeolites[J]. ACS Omega, 2022, 7(30):26289-26297. |
38 | MENG Fanjun, WANG Yaquan, WANG Shougui, et al. Hydration of cyclohexene over zeolite ZSM-5: Improved catalyst performance by alkali treatment[J]. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119(2): 671-683. |
39 | 刘帅. HZSM-5分子筛改性及其催化环己烯水合反应过程研究[D]. 烟台:烟台大学, 2022. |
LIU Shuai. Study on HZSM-5 modification and catalytic cyclohexene of hydration process[D]. Yantai: Yantai University, 2022. | |
40 | LIU Shuai, SUN Dahai, TIAN Hui. Novel hydrophobic catalysts to promote hydration at the water-oil interface[J]. RSC Advances, 2021, 11(30): 18299-18307. |
41 | 宋守强, 李明罡, 李黎声, 等. 磷改性ZSM-5分子筛的水热稳定性[J]. 石油学报(石油加工), 2014, 30(2): 194-203. |
SONG Shouqiang, LI Minggang, LI Lisheng, et al. Hydrothermal stability of P-modified ZSM-5 molecular sieves[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(2): 194-203. | |
42 | SHAN Xianglei, CHENG Zhenmin, LI Ying. Solvent effects on hydration of cyclohexene over H-ZSM-5 catalyst[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4310-4316. |
43 | 刘媛. 苯选择加氢和环己烯水合催化反应过程研究[D]. 天津: 河北工业大学, 2007. |
LIU Yuan. Study on the selective hydrogenation of benzene and hydration of cyclohexene[D]. Tianjin: Hebei University of Technology, 2007. | |
44 | TAKAMATSU Y, KANESHIMA T. Process for the preparation of cyclohexanol: US6552235[P]. 2003-04-22. |
45 | 励娟, 魏珺芳, 王延吉, 等. 异佛尔酮对环己烯水合反应性能的影响[J]. 精细石油化工, 2011, 28(4): 55-59. |
LI Juan, WEI Junfang, WANG Yanji, et al. Effect of isophorone on hydration of cyclohexene[J]. Speciality Petrochemicals, 2011, 28(4): 55-59. | |
46 | PANNEMAN H J, BEENACKERS A A C M. Solvent effects on the hydration of cyclohexene catalyzed by a strong acid ion-exchange resin. 1. Solubility of cyclohexene in aqueous sulfolane mixtures[J]. Industrial & Engineering Chemistry Research, 1992, 31(4): 1227-1231. |
47 | Jan PANNEMAN H, BEENACKERS A A C M. Solvent effects in the liquid phase hydration of cyclohexene catalyzed by a macroporous strong acid ion-exchange resin[J]. Chemical Engineering Science, 1992, 47(9/10/11): 2635-2640. |
48 | JIA Bin, YANG Xiu, HUANG Meiyu, et al. Hydration of alkenes catalyzed by wool-palladium-iron complex[J]. Reactive & Functional Polymers, 2003, 57(2/3): 163-168. |
49 | YUAN Peiqing, LIU Ying, BAI Fan, et al. Hydration of cyclohexene in sub-critical water over WO x -ZrO2 catalysts[J]. Catalysis Communications, 2011, 12(8): 753-756. |
50 | KUMAR R, KATARIYA A, FREUND H, et al. Development of a novel catalytic distillation process for cyclohexanol production: Mini plant experiments and complementary process simulations[J]. Organic Process Research & Development, 2011, 15(3): 527-539. |
51 | 赵贺潘. 碳基固体酸催化环己烯与甲酸酯化反应及动力学研究[D]. 天津: 河北工业大学, 2016. |
ZHAO Hepan. Study on the esterification of cyclohexene with formic acid over carbon-based solid acid and its kinetics[D]. Tianjin:Hebei University of Technology, 2016. | |
52 | 马恒. 异丙醇生产工艺研究进展[J]. 云南化工, 2021, 48(7): 18-20. |
MA Heng. Research progress of isopropanol production technology[J]. Yunnan Chemical Technology, 2021, 48(7): 18-20. | |
53 | 胡翔, 李涛. 以丙烯为原料的产业链延伸加工及其新进展[J]. 石油化工技术与经济, 2013, 29(2): 17-20. |
HU Xiang, LI Tao. Industrial chain extension processing with propylene as raw material and its progress[J]. Technology & Economics in Petrochemicals, 2013, 29(2): 17-20. | |
54 | 史可心, 陶涛, 李龙燕, 等. 异丙醇生产工艺的分析比较[J]. 当代化工研究, 2022(8): 155-158. |
SHI Kexin, TAO Tao, LI Longyan, et al. Analysis and comparison of production technology for isopropanol[J]. Modern Chemical Research, 2022(8): 155-158. | |
55 | 李雪玲. 酸改性SPU-WL、ZSM-5分子筛对异丙醇的催化研究[D]. 上海: 上海第二工业大学, 2022. |
LI Xueling. Catalysis of isopropanol by acid-modified SPU-WL and ZSM-5 molecular sieves[D]. Shanghai:Shanghai Polytechnic University,2022. | |
56 | 唐国旗, 徐利红, 田保亮, 等. 异丙醇的生产工艺及应用[J]. 石油化工, 2021, 50(3): 285-288. |
TANG Guoqi, XU Lihong, TIAN Baoliang, et al. Manufacturing technology and its application prospect of isopropanol[J]. Petrochemical Technology, 2021, 50(3): 285-288. | |
57 | 刘中民, 朱书魁, 张世刚, 等. 丙烯直接水合法生产异丙醇技术[J]. 精细与专用化学品, 2005, 13(15): 1-4. |
LIU Zhongmin, ZHU Shukui, ZHANG Shigang, et al. Progress on production of isopropanol by direct hydration of propylene[J]. Fine and Specialty Chemicals, 2005, 13(15): 1-4. | |
58 | 郭琳. 高低温费托合成联产中烯烃齐聚催化剂的制备及性能研究[D]. 太原: 太原理工大学, 2013. |
GUO Lin. Olefin oligomerization catalyst preparation and performance in coproduction of high/low temperature Fischer-Tropsch synthesis[D]. Taiyuan: Taiyuan University of Technology, 2013. | |
59 | 袁梅卿, 姚亚平, 徐菁, 等. 新一代固体磷酸催化剂T-99研制[J]. 化学世界, 2002, 43(5): 239-242. |
YUAN Meiqing, YAO Yaping, XU Jing, et al. Study on new solid phosphoric acid catalyst T-99[J]. Chemical World, 2002, 43(5): 239-242. | |
60 | 王慧风, 刘靖, 喻瑞. ZSM-35分子筛的酸改性及其用于丙烯水合制异丙醇反应的性能[J]. 工业催化, 2018, 26(7): 48-53. |
WANG Huifeng, LIU Jing, YU Rui. Catalytic performance of acid modified ZSM-35 zeolite for propylene hydration to isopropanol[J]. Industrial Catalysis, 2018, 26(7): 48-53. | |
61 | 周庆伟. 丙烯直接水合制备异丙醇工艺的研究[D]. 大连: 大连理工大学, 2015. |
ZHOU Qingwei. Study on the process of direct hydration of propylene for preparation of isopropanol[D]. Dalian: Dalian University of Technology, 2015. | |
62 | POPOVA N M, DOSUMOV K. Hydration of olefins into alcohols[J]. Eurasian Chemico-Technological Journal, 2009, 12(1): 23. |
63 | BOURANE A, VOGEL S R, XU Wei. Hydrated niobium oxide nanoparticle containing catalysts for olefin hydration: US8629080[P]. 2014-01-14. |
64 | 王延吉, 唐靖, 李赫. 丙烯水合制备异丙醇/异丙醚沸石催化剂[J]. 石油化工,1995, 24(7): 507-511. |
WANG Yanji, TANG Jing, LI He. Preparation of isopropanol/isopropyl ether zeolite catalyst by hydration of propylene[J]. Petrochemical Technology, 1995, 24(7): 507-511. | |
65 | 李伟, 陶克毅, 李赫垣. 分子筛催化丙烯水合制异丙醇的研究进展[J]. 石油化工, 1996, 25(9): 656-662. |
LI Wei, TAO Keyi, LI Heyuan. Research progress in preparation of isopropanol from propylene hydration catalyzed by molecular sieves[J]. Petrochemical Technology, 1996, 25(9): 656-662. | |
66 | BELL W K, BROWN S H, TREWELLA J C. Multistage indirect propylene hydration process for the production of diisopropyl ether and isopropanol: US5569789[P]. 1996-10-29. |
67 | CAO Zhijun, ZHAO Xin, HE Feiqiang, et al. Highly efficient indirect hydration of olefins to alcohols using superacidic polyoxometalate-based ionic hybrids catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6654-6663. |
68 | 谢小雨, 李竑樾, 朱明乔. C6~C8烯烃水合催化剂的研究进展[J]. 合成纤维工业, 2021, 44(1): 43-47. |
XIE Xiaoyu, LI Hongyue, ZHU Mingqiao. Research progress of C6—C8 olefin hydration catalysts[J]. China Synthetic Fiber Industry, 2021, 44(1): 43-47. | |
69 | KOSEOGLU O R, SAWAN A. Conversion of olefinic naphthas by hydration to produce middle distillate fuel blending components: WO2020146181A8 [S]. 2021-07-29. |
70 | XUE Lei, ZHOU Dejun, TANG Li, et al. The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer-metal complex, silica-supported chitosan-cobalt complex[J]. Reactive & Functional Polymers, 2004, 58(2) : 117-121. |
71 | PRASETYOKO D, RAMLI Z, ENDUD S, et al. TS-1 loaded with sulfated zirconia as bifunctional oxidative and acidic catalyst for transformation of 1-octene to 1,2-octanediol[J]. Journal of Molecular Catalysis A: Chemical, 2005, 241(1/2): 118-125. |
72 | 黄乐. 合成气制高碳醇CuFe催化剂研究[D]. 上海: 华东理工大学, 2021. |
HUANG Le. Study on CuFe catalysts for higher alcohols synthesis from syngas[D]. Shanghai: East China University of Science and Technology, 2021. | |
73 | 钱菊敏. 合成气制多碳醇技术进展[J]. 化学反应工程与工艺, 2018, 34(2): 178-187. |
QIAN Jumin. Recent advances in higher alcohols synthesis from syngas[J]. Chemical Reaction Engineering and Technology, 2018, 34(2): 178-187. | |
74 | HARALD K, THOMAS U, DETLEF H, et al. Process for the production of lower alcohols by olefin hydration: US8809600[P]. 2014-08-19. |
75 | XU Wei. Dual phase catalysts system for mixed olefin hydrations: US8865951(B2)[P]. 2014-10-21. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[6] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[7] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[12] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[13] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[14] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[15] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |