化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3501-3509.DOI: 10.16085/j.issn.1000-6613.2022-1687
收稿日期:
2022-09-13
修回日期:
2023-01-02
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
宋钫
作者简介:
冯江涵(1998—),女,硕士研究生,研究方向为能源电催化。E-mail:feng_jiangh@sjtu.edu.cn。
基金资助:
Received:
2022-09-13
Revised:
2023-01-02
Online:
2023-07-15
Published:
2023-08-14
Contact:
SONG Fang
摘要:
阴离子交换膜电解池(AEMWE)可以将稀碱性溶液或纯水作为电解液,使用较为廉价的阴离子交换膜和高活性的非贵金属催化剂,有效降低电解水能耗且大幅减少投入成本。本文对AEMWE的性能特点和发展优势进行了总结,详细分析了AEMWE中的催化剂材料、阴离子交换膜和离聚物等关键组件的研究进展。研究认为,Ni-Fe基催化剂将是最有可能的阳极材料,通过设计新型催化剂层,制造多孔结构,解决催化剂的溶解问题;通过提高离子交换容量来有效提升离聚物和阴离子交换膜的离子电导率、水扩散系数和耐久性等。最后提出了未来AEMWE的研发方向,通过对膜电极组件进行材料创新和工艺优化,发展纯水作为电解液,提高测试体系的灵活性,获得高效、低成本、稳定的AEMWE制氢装置。
中图分类号:
冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509.
FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509.
1 | XU D Y, STEVENS M B, MONTY R, et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells[J]. ACS Catalysis, 2019, 9(1): 7-15. |
2 | FRIEDLINGSTEIN P, ANDREW R M, ROGELJ J, et al. Persistent growth of CO2 emissions and implications for reaching climate targets[J]. Nature Geoscience, 2014, 7(10): 709-715. |
3 | CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
4 | URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
5 | LUO Yuting, ZHANG Zhiyuan, CHHOWALLA Manish, et al. Recent advances in design of electrocatalysts for high-current-density water splitting[J]. Advanced Materials, 2022, 34(16): 2108133. |
6 | TONG Wenming, FORSTER Mark, DIONIGI Fabio, et al. Electrolysis of low-grade and saline surface water[J]. Nature Energy, 2020, 5(5): 367-377. |
7 | VINCENT Immanuel, BESSARABOV Dmitri. Low cost hydrogen production by anion exchange membrane electrolysis: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
8 | HU Congling, ZHANG Lei, GONG Jinlong. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy & Environmental Science, 2019, 12(9): 2620-2645. |
9 | DTU, & Dong Energy. Pre-investigation of water electrolysis[R]. Water, 2008(2): 1-195. |
10 | MILLET P, MBEMBA N, GRIGORIEV S A, et al. Electrochemical performances of PEM water electrolysis cells and perspectives[J]. International Journal of Hydrogen Energy, 2011, 36(6): 4134-4142. |
11 | BERNT M, HARTIG-WEIß A, TOVINI M F, et al. Current challenges in catalyst development for PEM water electrolyzers[J]. Chemie Ingenieur Technik, 2020, 92(1/2): 31-39. |
12 | LIM A, CHO M K, LEE S Y, et al. A review of industrially developed components and operation conditions for anion exchange membrane water electrolysis[J]. Journal of Electrochemical Science and Technology, 2017, 8(4): 265-273. |
13 | CHO M K, LIM A, LEE S Y, et al. A review on membranes and catalysts for anion exchange membrane water electrolysis single cells[J]. Journal of Electrochemical Science and Technology, 2017, 8(3): 183-196. |
14 | LAMY C, MILLET P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions[J]. Journal of Power Sources, 2020, 447: 227350. |
15 | PAVEL C C, CECCONI F, EMILIANI C, et al. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis[J]. Angewandte Chemie International Edition, 2014, 53(5): 1378-1381. |
16 | ZENG L, ZHAO T S. Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis[J]. Nano Energy, 2015, 11: 110-118. |
17 | PARK J E, KANG S Y, OH S H, et al. High-performance anion-exchange membrane water electrolysis[J]. Electrochimica Acta, 2019, 295: 99-106. |
18 | CHOI W S, JANG M J, PARK Y S, et al. Three-dimensional honeycomb-like Cu0.81Co2.19O4 nanosheet arrays supported by Ni foam and their high efficiency as oxygen evolution electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38663-38668. |
19 | WU Xu, SCOTT Keith. Cu x Co3- x O4 (0≤x<1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers[J]. Journal of Materials Chemistry, 2011, 21(33): 12344-12351. |
20 | AHN S H, LEE B S, CHOI I, et al. Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers[J]. Applied Catalysis B: Environmental, 2014, 154/155: 197-205. |
21 | SEETHARAMAN S, BALAJI R, RAMYA K, et al. Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14934-14942. |
22 | AN L, ZHAO T S, CHAI Z H, et al. Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(35): 19869-19876. |
23 | XIAO Li, ZHANG Shuai, PAN Jing, et al. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water[J]. Energy & Environmental Science, 2012, 5(7): 7869. |
24 | KACZUR J J, YANG H Z, LIU Z C, et al. Carbon dioxide and water electrolysis using new alkaline stable anion membranes[J]. Frontiers in Chemistry, 2018, 6: 263. |
25 | CHEN N J, PAEK S Y, LEE J Y, et al. High-performance anion exchange membrane water electrolyzers with a current density of 7.68A·cm-2 and a durability of 1000 hours[J]. Energy & Environmental Science, 2021, 14: 6338-6348. |
26 | HENKENSMEIER Dirk, NAJIBAH Malikah, HARMS Corinna, et al. Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 024001. |
27 | VOGEL Claus, Jochen MEIER-HAACK. Preparation of ion-exchange materials and membranes[J]. Desalination, 2014, 342: 156-174. |
28 | LU Shanfu, PAN Jing, HUANG Aibin, et al. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52): 20611-20614. |
29 | MERLE Géraldine, WESSLING Matthias, NIJMEIJER Kitty. Anion exchange membranes for alkaline fuel cells: A review[J]. Journal of Membrane Science, 2011, 377(1): 1-35. |
30 | LIN C X, ZHUO Y Z, LAI A N, et al. Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells[J]. Journal of Membrane Science, 2016, 513: 206-216. |
31 | LI D G, MATANOVIC I, LEE A S, et al. Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer[J]. ACS Applied Materials Interfaces, 2019, 11(10): 9696-9701. |
32 | FARAJ Marco, BOCCIA Massimiliano, MILLER Hamish, et al. New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(20): 14992-15002. |
33 | VARCOE J R, ATANASSOV P, DEKEL D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191. |
34 | PARRONDO J, ARGES C G, NIEDZWIECKI M, et al. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis[J]. RSC Advances, 2014, 4(19): 9875-9879. |
35 | FAID A Y, XIE L, BARNETT A O, et al. Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(53): 28272-28284. |
36 | Sebastian OTT, ORFANIDI Alin, SCHMIES Henrike, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19(1): 77-85. |
37 | KOMKOVA E N, STAMATIALIS D F, STRATHMANN H, et al. Anion-exchange membranes containing diamines: Preparation and stability in alkaline solution[J]. Journal of Membrane Science, 2004, 244(1): 25-34. |
38 | PHAM T H, OLSSON J S, JANNASCH P. N-spirocyclic quaternary ammonium ionenes for anion-exchange membranes[J]. Journal of the American Chemical Society, 2017, 139(8): 2888-2891. |
39 | LI D G, PARK E J, ZHU W L, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385. |
40 | ZHAO Tuo, LONG Chuan, WANG Zhiqian, et al. Multication cross-linked poly(p-terphenyl isatin) anion exchange membranes for fuel cells: Effect of cross-linker length on membrane performance[J]. ACS Applied Energy Materials, 2021, 4(12): 14476-14487. |
41 | DU Naiying, ROY Claudie, PEACH Retha, et al. Anion-exchange membrane water electrolyzers[J]. Chemical Reviews, 2022, 122(13): 11830-11895. |
42 | ITO Hiroshi, MIYAZAKI Naoki, SUGIYAMA Shota, et al. Investigations on electrode configurations for anion exchange membrane electrolysis[J]. Journal of Applied Electrochemistry, 2018, 48(3): 305-316. |
43 | MILLER H A, BOUZEK K, HNAT J, et al. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions[J]. Sustainable Energy & Fuels, 2020, 4(5): 2114-2133. |
44 | RAZMJOOEI Fatemeh, MORAWIETZ Tobias, TAGHIZADEH Ehsan, et al. Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer[J]. Joule, 2021, 5(7): 1776-1799. |
45 | MOLLER T, THANH T N, WANG X L, et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2 [J]. Energy & Environmental Science, 2021, 14: 5995-6006. |
46 | AILI D, HANSEN M K, ANDREASEN J W, et al. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis[J]. Journal of Membrane Science, 2015, 493: 589-598. |
47 | LIU Z C, SAJJAD S D, GAO Y, et al. The effect of membrane on an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29661-29665. |
48 | CHEN G C, WONDIMU T H, HUANG H C, et al. Microwave-assisted facile synthesis of cobaltiron oxide nanocomposites for oxygen production using alkaline anion exchange membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10174-10181. |
49 | LIM A, KIM H J, HENKENSMEIER D, et al. A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 410-418. |
50 | VINCENT Immanuel. Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM)[J]. International Journal of Electrochemical Science, 2018, 13: 11347-11358. |
51 | HNAT Jaromír, PAIDAR Martin, SCHAUER Jan, et al. Polymer anion-selective membrane for electrolytic water splitting: The impact of a liquid electrolyte composition on the process parameters and long-term stability[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4779-4787. |
52 | XIAO J W, OLIVEIRA A M, WANG L, et al. Water-fed hydroxide exchange membrane electrolyzer enabled by a fluoride-incorporated nickel-iron oxyhydroxide oxygen evolution electrode[J]. ACS Catalysis, 2021, 11(1): 264-270. |
53 | XU Q C, OENER S Z, LINDQUIST G, et al. Integrated reference electrodes in anion-exchange-membrane electrolyzers: Impact of stainless-steel gas-diffusion layers and internal mechanical pressure[J]. ACS Energy Letters, 2021, 6(2): 305-312. |
54 | PARK Y S, JEONG J, NOH Y, et al. Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts[J]. Applied Catalysis B: Environmental, 2021, 292: 120170. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |