24 |
WANG Yuyao, LIAO Youjun, ZENG Wei. Application of water-cooled methanol synthesis reactor technology around tube[J]. Coal Chemical Industry, 2022, 50(5): 45-47.
|
25 |
张建利. 管壳外冷-绝热复合式甲醇合成反应器在大型甲醇合成装置中的应用[J]. 肥料与健康, 2022, 49(4): 40-44.
|
|
ZHANG Jianli. Application of shell and tube external cooling-adiabatic combined style methanol synthesis reactor in large methanol synthesis unit[J]. Fertilizer & Health, 2022, 49(4): 40-44.
|
26 |
李万林, 李芮, 孙乖绪, 等. Davy、Lurgi、Topsoe甲醇合成工艺对比分析及其应用情况[J]. 中氮肥, 2021(5): 41-45.
|
|
LI Wanlin, LI Rui, SUN Guaixu, et al. Comparative analysis and application of methanol synthesis processes of Davy, Lurgi and Topsoe[J]. M-Sized Nitrogenous Fertilizer Progress, 2021(5): 41-45.
|
27 |
李芮, 李万林, 武海梅, 等. 煤基甲醇合成工艺技术选择及生产效率影响因素浅析[J]. 中氮肥, 2020(6): 49-54.
|
|
LI Rui, LI Wanlin, WU Haimei, et al. Selection of coal-based methanol synthesis process technology and analysis of influencing factors of production efficiency[J]. M-Sized Nitrogenous Fertilizer Progress, 2020(6): 49-54.
|
28 |
王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317.
|
|
WANG Jijie, HAN Zhe, CHEN Siyu, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317.
|
29 |
姬加良. 煤与不同原料重整气化制甲醇对CO2排放的影响[J]. 能源科技, 2020, 18(2): 62-66.
|
|
JI Jialiang. Effect of reforming gasification to methanol by coal and different raw materials on carbon dioxide emission[J]. Energy Science and Technology, 2020, 18(2): 62-66.
|
30 |
张雨曦.绿电装机有望达五成 全国电力供需总体平衡[N]. 中国工业报, 2022-07-13(6).
|
|
ZHANG Yuxi. The installed green electricity is expected to reach 50% of the overall balance of electricity supply and demand in China[N].China Industry News,2022-07-13(6).
|
31 |
白冰, 李小春, 刘延锋, 等. 中国CO2集中排放源调查及其分布特征[J]. 岩石力学与工程学报, 2006, 25(S1): 2918-2923.
|
1 |
张钰. 全球2022年能源碳排放量增 0.9%创历史新高[EB/OL].(2023-03-03)[2023-04-10]. .
|
2 |
辛明悦. 科学家测算发现:2022年全球碳排放量预计达406亿吨不减反增[EB/OL].(2022-11-11)[2023-04-10]..
|
3 |
朱琼芳. 我国甲醇及其下游产品市场分析与展望[J]. 煤化工, 2019, 47(6): 52-57.
|
|
ZHU Qiongfang. Market analysis and prospect of methanol and its downstream products in China[J]. Coal Chemical Industry, 2019, 47(6): 52-57.
|
4 |
ZHAO Kai. Global methanol marine fuel development and trend: Carbon intensity of methanol(2022)[R].Methanal Institute, 2021-08-08.
|
5 |
瞿磊, 李胜乾, 江莉莎. 煤-天然气综合利用制甲醇CO2减排分析[J]. 煤化工, 2022, 50(3): 9-11, 40.
|
|
QU Lei, LI Shengqian, JIANG Lisha. CO2 emission reduction analysis of coal and natural gas comprehensive utilization to methanol[J]. Coal Chemical Industry, 2022, 50(3): 9-11, 40.
|
6 |
WANG Danjun, TAO Furong, ZHAO Huahua, et al. Preparation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol by CO2 assisted aging[J]. Chinese Journal of Catalysis, 2011, 32(9/10): 1452-1456.
|
7 |
马晓然, 王康军, 吴静. Cu-ZnO-Al2O3-ZrO2催化二氧化碳加氢合成甲醇的研究[J]. 沈阳化工大学学报, 2012, 26(4): 314-317.
|
|
MA Xiaoran, WANG Kangjun, WU Jing. Synthesis of methanol from CO2 hydrogenation over Cu-ZnO-Al2O3-ZrO2 catalyst[J]. Journal of Shenyang University of Chemical Technology, 2012, 26(4): 314-317.
|
8 |
于杨. 轻稀土元素改性Cu-ZnO-Al2O3催化剂对CO2加氢制甲醇反应的催化性能[J]. 石油化工, 2016, 45(1): 24-30.
|
|
YU Yang. Cu-ZnO-Al2O3 catalyst modify with light rare earth elements for CO2 hydrogenation to methanol[J]. Petrochemical Technology, 2016, 45(1): 24-30.
|
31 |
BAI Bing, LI Xiaochun, LIU Yanfeng, et al. Preliminary study on CO2 industrial point sources and their distribution in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2918-2923.
|
32 |
陆诗建, 蒋超, 康寿兴. 基于MVR热泵的胺法捕集回收烟气中CO2 [J]. 山东化工, 2018, 47(10): 196-200.
|
|
LU Shijian, JIANG Chao, KANG Shouxing. Recovery of CO2 in flue gas by amine method based on MVR heat pump[J]. Shandong Chemical Industry, 2018, 47(10): 196-200.
|
33 |
德信海事. 山重水复疑无路?——甲醇作为船舶燃料的应用现状与未来发展[EB/OL].(2022-11-18)[2023-04-13]..
|
34 |
程一步. 低碳甲醇燃料全生命周期碳排分析[J]. 石油石化绿色低碳, 2023, 8(1): 9-16.
|
|
CHENG Yibu. Lifecycle carbon emission analysis of low-carbon methanol fuel[J]. Green Petroleum & Petrochemicals, 2023, 8(1): 9-16.
|
35 |
德信海事. 马士基为旗下12艘大型甲醇箱船锁定绿色燃料[EB/OL].(2022-03-12)[2023-04-15]..
|
9 |
高文桂, 王华, 张逢杰, 等. 铜锌比对CuO-ZnO-ZrO2催化剂CO2加氢合成甲醇性能的影响[J]. 天然气化工(C1化学与化工), 2014, 39(4): 16-20, 40.
|
|
GAO Wengui, WANG Hua, ZHANG Fengjie, et al. Effect of Cu/Zn ratio on properties of CuO-ZnO-ZrO2 for methanol synthesis from CO2 hydrogenation[J]. Natural Gas Chemical Industry, 2014, 39(4): 16-20, 40.
|
10 |
于杨, 郝爱香, 陈海波, 等. TiO2助剂对Cu-ZnO/ZrO2催化剂催化CO2加氢制甲醇反应性能的影响[J]. 石油化工, 2014, 43(5): 511-516.
|
|
YU Yang, HAO Aixiang, CHEN Haibo, et al. Effect of TiO2 as promoter on catalytic performance of Cu-ZnO/ZrO2 in hydrogenation of CO2 to methanol[J]. Petrochemical Technology, 2014, 43(5): 511-516.
|
11 |
程鹏泽, 高文桂, 纳薇, 等. 不同沉淀剂对CO2加氢合成甲醇Cu-ZnO-ZrO2催化剂性能的影响[J]. 化工进展, 2017, 36(8): 2955-2961.
|
|
CHENG Pengze, GAO Wengui, NA Wei, et al. Influence of different precipitants on the properties of Cu-ZnO-ZrO2 catalyst for methanol synthesis through CO2 hydrogenation[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2955-2961.
|
12 |
KATTEL Shyam, RAMÍREZ Pedro J, CHEN Jingguang G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299.
|
13 |
王野. MOFs限域Cu/ZnOx超小纳米粒子催化CO2选择加氢制甲醇[J]. 物理化学学报, 2017, 33(5): 857-858.
|
|
WANG Ye. Selective hydrogenation of CO2 to methanol catalyzed by MOFs confined Cu/ZnO x ultrafine nanoparticles[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 857-858.
|
14 |
AN Bing, ZHANG Jingzheng, CHENG Kang, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 [J]. Journal of the American Chemical Society, 2017, 139(10): 3834-3840.
|
15 |
魏伟, 孙予罕, 闻霞, 等. 二氧化碳资源化利用的机遇与挑战[J]. 化工进展, 2011, 30(1): 216-224.
|
|
WEI Wei, SUN Yuhan, WEN Xia, et al. Opportunities and challenges of carbon dioxide utilization as a resource[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 216-224.
|
16 |
庄会栋, 白绍芬, 刘欣梅, 等. Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J]. 燃料化学学报, 2010, 38(4): 462-467.
|
|
ZHUANG Huidong, BAI Shaofen, LIU Xinmei, et al. Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 462-467.
|
17 |
WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290.
|
18 |
ZHANG Tao. ZnO-ZrO2 solid solution catalyst for highly selective hydrogenation of CO2 to methanol[J]. Chinese Journal of Catalysis, 2017, 38(11): 1781-1783.
|
19 |
YANG Xiaofang, KATTEL Shyam, SENANAYAKE Sanjaya D, et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeO x /TiO2 interface[J]. Journal of the American Chemical Society, 2015, 137(32): 10104-10107.
|
20 |
BAHRUJI Hasliza, BOWKER Michael, HUTCHINGS Graham, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2016, 343: 133-146.
|
21 |
李庆勋, 王宗宝, 娄舒洁, 等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工, 2019, 39(5): 19-23.
|
|
LI Qingxun, WANG Zongbao, LOU Shujie, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019, 39(5): 19-23.
|
22 |
周伟. 甲醇合成技术的研究进展[J]. 当代化工研究, 2021(8): 143-144.
|
|
ZHOU Wei. Research progress of methanol synthesis technology[J]. Modern Chemical Research, 2021(8): 143-144.
|
23 |
张彦强. 大型甲醇合成反应器研究[J]. 山西化工, 2021, 41(5): 173-174, 177.
|
|
ZHANG Yanqiang. Study on large scale methanol synthesis reactor[J]. Shanxi Chemical Industry, 2021, 41(5): 173-174, 177.
|
24 |
王雨瑶, 廖友军, 曾伟. 绕管水冷甲醇合成反应器技术的应用[J]. 煤化工, 2022, 50(5): 45-47.
|