化工进展 ›› 2022, Vol. 41 ›› Issue (1): 300-309.DOI: 10.16085/j.issn.1000-6613.2021-0288
王文霞1,2(), 刘小丰1, 陈浠1, 许艳虹1, 蒙振邦1, 郑俊霞1, 安太成2()
收稿日期:
2021-02-07
修回日期:
2021-04-06
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
安太成
作者简介:
王文霞(1990—),女,博士,讲师,研究方向为环境光催化。E-mail:基金资助:
WANG Wenxia1,2(), LIU Xiaofeng1, CHEN Xi1, XU Yanhong1, MENG Zhenbang1, ZHENG Junxia1, AN Taicheng2()
Received:
2021-02-07
Revised:
2021-04-06
Online:
2022-01-05
Published:
2022-01-24
Contact:
AN Taicheng
摘要:
多孔g-C3N4基光催化材料由于具有较高的比表面积、丰富的反应活性位点和较短的电子传递路径等特点,能较好地解决块体g-C3N4基材料存在的比表面积小、光生载流子复合快及可见光利用效率低等问题,因而具有广阔的发展前景和应用潜力。本文主要从以下方面进行综述:多孔g-C3N4基光催化材料常用的制备方法,包括硬模板法、软模板法、水热合成法、热聚合法、超分子自组装法;多孔g-C3N4基材料在光催化领域的应用,包括光解水制氢、光催化降解有机污染物、光催化去除氮氧化物和光催化还原CO2等;最后指出了当前影响多孔g-C3N4基光催化材料发展的关键问题,并对其在光催化领域的应用前景进行了展望。
中图分类号:
王文霞, 刘小丰, 陈浠, 许艳虹, 蒙振邦, 郑俊霞, 安太成. 多孔g-C3N4基光催化材料的制备及应用研究进展[J]. 化工进展, 2022, 41(1): 300-309.
WANG Wenxia, LIU Xiaofeng, CHEN Xi, XU Yanhong, MENG Zhenbang, ZHENG Junxia, AN Taicheng. Research advances of synthesis and applications of porous g-C3N4-based photocatalyst[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 300-309.
多孔催化剂 | 催化剂质量/mg | 反应溶剂 | 光源(>420nm) | 产氢速率/μmol?g-1?h-1 | 参考文献 |
---|---|---|---|---|---|
P掺杂g-C3N4 | 50 | TEOA(体积分数为10%) | 300W 氙灯 | 2020 | [ |
Ph-CN-MCA | 20 | TEOA/H2PtCl6?H2O | 300W 氙灯 | 4455 | [ |
3D g-C3N4 | 50 | H2O | 300W 氙灯 | 101.4 | [ |
g-C3N4-MFx | 50 | TEOA(体积分数为20%) | 300W 氙灯 | 3612.6 | [ |
O掺杂g-C3N4 | 50 | TEOA/H2PtCl6?H2O | 300W 氙灯 | 396 | [ |
g-C3N4/Ni2P | 50 | TEOA | 300W 氙灯 | 474.7 | [ |
表1 多孔g-C3N4基光催化材料在光催化制氢方面的应用
多孔催化剂 | 催化剂质量/mg | 反应溶剂 | 光源(>420nm) | 产氢速率/μmol?g-1?h-1 | 参考文献 |
---|---|---|---|---|---|
P掺杂g-C3N4 | 50 | TEOA(体积分数为10%) | 300W 氙灯 | 2020 | [ |
Ph-CN-MCA | 20 | TEOA/H2PtCl6?H2O | 300W 氙灯 | 4455 | [ |
3D g-C3N4 | 50 | H2O | 300W 氙灯 | 101.4 | [ |
g-C3N4-MFx | 50 | TEOA(体积分数为20%) | 300W 氙灯 | 3612.6 | [ |
O掺杂g-C3N4 | 50 | TEOA/H2PtCl6?H2O | 300W 氙灯 | 396 | [ |
g-C3N4/Ni2P | 50 | TEOA | 300W 氙灯 | 474.7 | [ |
多孔催化剂 | 催化剂质量/mg | 有机污染物 | 光源 | 降解率 | 参考文献 |
---|---|---|---|---|---|
g-C3N4 | 40 | RhB(5mg/L) | 300W 卤钨灯 | 100%,60min | [ |
g-C3N4纳米片 | 10 | MB(1.2×10-5mol/L) | 300W 氙灯 | 100%,300min | [ |
双氧掺杂g-C3N4 | 50 | BA(20mg/L) | 300W 氙灯 | 99%,50min | [ |
石墨烯-碳量子点/g-C3N4 | 30 | MO(30mg/L) | 300W 氙灯 | 91.1%,240min | [ |
g-C3N4/Ag3PO4 | 50 | MB(10mg/L) | 300W 氙灯 | 96% | [ |
Ag@AgCl/g?C3N4 | 25 | RhB(10mg/L) | 300W 氙灯 | 100%,30min | [ |
g-C3N4/AgBr/rGO | 50 | TC(20mg/L) | 250W 氙灯 | 79.8%,90min | [ |
Cl掺杂g-C3N4 | 50 | TC(20mg/L) | 300W 氙灯 | 92%,120min | [ |
氮化硼量子点/g-C3N4 | 50 | OTC-HCl(10mg/L) | 300W 氙灯 | 82%,60min | [ |
g-C3N4/Ag2CrO4 | 10 | RhB(10mg/L) | 300W 氙灯 | 99.2%,90min | [ |
表2 多孔g-C3N4光催化材料在光催化降解污染物方面的应用
多孔催化剂 | 催化剂质量/mg | 有机污染物 | 光源 | 降解率 | 参考文献 |
---|---|---|---|---|---|
g-C3N4 | 40 | RhB(5mg/L) | 300W 卤钨灯 | 100%,60min | [ |
g-C3N4纳米片 | 10 | MB(1.2×10-5mol/L) | 300W 氙灯 | 100%,300min | [ |
双氧掺杂g-C3N4 | 50 | BA(20mg/L) | 300W 氙灯 | 99%,50min | [ |
石墨烯-碳量子点/g-C3N4 | 30 | MO(30mg/L) | 300W 氙灯 | 91.1%,240min | [ |
g-C3N4/Ag3PO4 | 50 | MB(10mg/L) | 300W 氙灯 | 96% | [ |
Ag@AgCl/g?C3N4 | 25 | RhB(10mg/L) | 300W 氙灯 | 100%,30min | [ |
g-C3N4/AgBr/rGO | 50 | TC(20mg/L) | 250W 氙灯 | 79.8%,90min | [ |
Cl掺杂g-C3N4 | 50 | TC(20mg/L) | 300W 氙灯 | 92%,120min | [ |
氮化硼量子点/g-C3N4 | 50 | OTC-HCl(10mg/L) | 300W 氙灯 | 82%,60min | [ |
g-C3N4/Ag2CrO4 | 10 | RhB(10mg/L) | 300W 氙灯 | 99.2%,90min | [ |
多孔催化剂 | 催化剂质量/mg | 反应溶剂 | 光源(>420nm) | 产物产生速率/μmol?g-1?h-1 | 参考文献 |
---|---|---|---|---|---|
富氮g-C3N4 | 10 | H2O/TEOA/CoCl2/MeCN | 300W 氙灯 | 103.6 | [ |
O掺杂g-C3N4 | 50 | H2O | 350W 氙灯 | 0.88 | [ |
3D g-C3N4/C | 100 | H2O | 500W 氙灯 | 112 | [ |
Cu-NPs/g-C3N4 | 50 | H2O | 300W 氙灯 | 10.25 | [ |
CsPbBr3 QDs/g-C3N4 | 8 | 乙腈/H2O | 300W 氙灯 | 148.9 | [ |
g-C3N4/Sn2S3-DETA | 100 | H2O | 300W 氙灯 | 4.84 | [ |
NH2-UiO-66/g-C3N4 | 10 | H2O/TEOA | 300W 氙灯 | 31.7 | [ |
表3 多孔g-C3N4光催化材料在光催化CO2还原方面的应用
多孔催化剂 | 催化剂质量/mg | 反应溶剂 | 光源(>420nm) | 产物产生速率/μmol?g-1?h-1 | 参考文献 |
---|---|---|---|---|---|
富氮g-C3N4 | 10 | H2O/TEOA/CoCl2/MeCN | 300W 氙灯 | 103.6 | [ |
O掺杂g-C3N4 | 50 | H2O | 350W 氙灯 | 0.88 | [ |
3D g-C3N4/C | 100 | H2O | 500W 氙灯 | 112 | [ |
Cu-NPs/g-C3N4 | 50 | H2O | 300W 氙灯 | 10.25 | [ |
CsPbBr3 QDs/g-C3N4 | 8 | 乙腈/H2O | 300W 氙灯 | 148.9 | [ |
g-C3N4/Sn2S3-DETA | 100 | H2O | 300W 氙灯 | 4.84 | [ |
NH2-UiO-66/g-C3N4 | 10 | H2O/TEOA | 300W 氙灯 | 31.7 | [ |
1 | WANG Zheng, LI Can, DOMEN Kazunari. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chemical Society Reviews, 2019, 48(7): 2109-2125. |
2 | WANG Wanjun, LI Guiying, AN Taicheng, et al. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: the role of type I band alignment[J]. Applied Catalysis B: Environmental, 2018, 238: 126-135. |
3 | 杨冬, 周致远, 丁菲, 等. 特殊形貌g-C3N4 基光催化材料的研究进展[J]. 化工进展, 2019,38(1):495-504. |
YANG Dong, ZHOU Zhiyuan, DING Fei, et al. Research advances of g-C3N4-based photocatalytic materials with special morphologies[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 495-504. | |
4 | ZHANG Yuye, ZHOU Zhixin, SHEN Yanfei, et al. Reversible assembly of graphitic carbon nitride 3D network for highly selective dyes absorption and regeneration[J]. ACS Nano, 2016, 10(9): 9036-9043. |
5 | LI Wei, CHU Xiaoshan, WANG Fei, et al. Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution[J]. Applied Catalysis B: Environmental, 2021, 288: 120034. |
6 | 王悦, 蒋权, 尚介坤, 等. 介孔氮化碳材料合成的研究进展[J]. 物理化学学报, 2016, 32(8): 1913-1928. |
WANG Yue, JIANG Quan, SHANG Jiekun, et al. Advances in the synthesis of mesoporous carbon nitride materials[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1913-1928. | |
7 | WANG Xinchen, MAEDA Kazuhiko, CHEN Xiufang, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society, 2009, 131(5): 1680-1681. |
8 | FUKASAWA Yuki, TAKANABE Kazuhiro, SHIMOJIMA Atsushi, et al. Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template[J]. Chemistry: An Asian Journal, 2011, 6(1): 103-109. |
9 | YANG Zhenxing, CHU Dongliang, JIA Guangri, et al. Significantly narrowed bandgap and enhanced charge separation in porous, nitrogen-vacancy red g-C3N4 for visible light photocatalytic H2 production[J]. Applied Surface Science, 2020, 504: 144407. |
10 | LIANG Qinghua, LI Zhi, YU Xiaoliang, et al. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution[J]. Advanced Materials, 2015, 27(31): 4634-4639. |
11 | CHEN Daimei, YANG Jinjin, DING Hao. Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2017, 391: 384-391. |
12 | TANG Qingquan, NIU Ran, GONG Jiang. Salt-templated synthesis of 3D porous foam-like C3N4 towards high-performance photodegradation of tetracyclines[J]. New Journal of Chemistry, 2020, 44(40): 17405-17412. |
13 | ZHENG Yun, LIN Lihua, WANG Bo, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie International Edition, 2015, 54(44): 12868-12884. |
14 | WANG Yong, WANG Xinchen, ANTONIETTI Markus, et al. Facile one‐pot synthesis of nanoporous carbon nitride solids by using soft templates[J]. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2010, 3(4): 435-439. |
15 | YAN Qingyun, ZHAO Chaocheng, ZHANG Liang, et al. Facile two-step synthesis of porous carbon nitride with enhanced photocatalytic activity using a soft template[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3866-3874. |
16 | MARYAM Peer, LUSARDI Marcella, JENSEN Klavs F. Facile soft-templated synthesis of high-surface area and highly porous carbon nitrides[J]. Chemistry of Materials, 2017, 29(4): 1496-1506. |
17 | ZHANG Juan, LI Jinyi, WANG Wenpeng, et al. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries[J]. Advanced Energy Materials, 2018, 8(14): 1702839. |
18 | HUANG Hongwei, XIAO Ke, TIAN Na, et al. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity[J]. Journal of Materials Chemistry A, 2017, 5(33): 17452-17463. |
19 | MO Zhao, ZHU Xingwang, JING Zhifeng, et al. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 256: 117854. |
20 | WU Mao, ZHANG Jin, HE Beibei, et al. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 241: 159-166. |
21 | ZHENG Yanmei, LIU Yuanyuan, GUO Xinli, et al. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants[J]. Journal of Materials Science & Technology, 2020, 41: 117-126. |
22 | LI Wei, WANG Xiao, LI Min, et al. Construction of Z-scheme and p-n heterostructure: three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 268: 118384. |
23 | LI Xibao, XIONG Jie, GAO Xiaoming, et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction[J]. Journal of Alloys and Compounds, 2019, 802: 196-209. |
24 | CHEN Yanglin, QU Ye, ZHOU Xin, et al. Phenyl-bridged graphitic carbon nitride with a porous and hollow sphere structure to enhance dissociation of photogenerated charge carriers and visible-light-driven H2 generation[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41527-41537. |
25 | LI Yongting, ZHANG Xiaoli, PENG Zhikun, et al. Hierarchical porous g-C3N4 coupled ultrafine RuNi alloys as extremely active catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8458-8468. |
26 | SHALOM Menny, INAL Sahika, FETTKENHAUER Christian, et al. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers[J]. Journal of the American Chemical Society, 2013, 135(19): 7118-7121. |
27 | CHEN Xianjie, SHI Run, CHEN Qian, et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting[J]. Nano Energy, 2019, 59: 644-650. |
28 | JORDAN Thomas, FECHLER Nina, XU Jingsan, et al. “Caffeine doping” of carbon/nitrogen-based organic catalysts: caffeine as a supramolecular edge modifier for the synthesis of photoactive carbon nitride tubes[J]. ChemCatChem, 2015, 7(18): 2826-2830. |
29 | WANG Wanjun, AN Taicheng, LI Guiying, et al. Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 217: 570-580. |
30 | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
31 | CHE Huinan, LIU Chunbo, CHE Guangbo, et al. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution[J]. Nano Energy, 2020, 67: 104273. |
32 | WANG Yong, DU Peipei, PAN Hongzhe, et al. Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis[J]. Advanced Materials, 2019, 31(40): 1807540. |
33 | HUANG Yanbin, LIU Jun, ZHAO Chao, et al. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52603-52614. |
34 | JIANG Yabin, SUN Zongzhao, TANG Chao, et al. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition[J]. Applied Catalysis B: Environmental, 2019, 240: 30-38. |
35 | ZENG Deqian, WU Wanjie, Wee Jun ONG, et al. Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub-15nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces[J]. Applied Catalysis B: Environmental, 2018, 221: 47-55. |
36 | AZIMI Elham Boorboor, BADIEI Alireza, SADR Moayad Hossaini, et al. A template-free method to synthesize porous g-C3N4 with efficient visible light photodegradation of organic pollutants in water[J]. Advanced Powder Technology, 2018, 29(11): 2785-2791. |
37 | XU Jing, WANG Zhouping, ZHU Yongfa. Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27727-27735. |
38 | LI Guiying, NIE Xin, GAO Yanpeng, et al. Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation? —Implications of persistent toxic intermediates[J]. Applied Catalysis B: Environmental, 2016, 180: 726-732. |
39 | LI Guiying, NIE Xin, GAO Yanpeng, et al. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach[J]. Water Research, 2015, 86: 17-24. |
40 | ZHANG Sai, LIU Yang, GU Pengcheng, et al. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies[J]. Applied Catalysis B: Environmental, 2019, 248: 1-10. |
41 | JIANG Jingjing, WANG Xingyue, ZHANG Chongjun, et al. Porous 0D/3D NiCo2O4/g-C3N4 accelerate emerging pollutant degradation in PMS/Vis system: degradation mechanism, pathway and toxicity assessment[J]. Chemical Engineering Journal, 2020, 397: 125356. |
42 | HE Huijuan, HUANG Langhuan, ZHONG Zijun, et al. Constructing three-dimensional porous graphene-carbon quantum dots/g-C3N4 nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2018, 441: 285-294. |
43 | ZHANG Jinfeng, Jiali LYU, DAI Kai, et al. Facile and green synthesis of novel porous g-C3N4/Ag3PO4 composite with enhanced visible light photocatalysis[J]. Ceramics International, 2017, 43(1): 1522-1529. |
44 | ZHANG Shouwei, LI Jiaxing, WANG Xiangke, et al. In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22116-22125. |
45 | ZHOU Yaju, LI Jinze, LIU Chongyang, et al. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity[J]. Applied Surface Science, 2018, 458: 586-596. |
46 | GUO Feng, LI Mingyang, REN Hongji, et al. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light[J]. Separation and Purification Technology, 2019, 228: 115770. |
47 | YANG Yang, ZHANG Chen, HUANG Danlian, et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation[J]. Applied Catalysis B: Environmental, 2019, 245: 87-99. |
48 | SHANG Yanyang, CHEN Xi, LIU Wenwen, et al. Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method[J]. Applied Catalysis B: Environmental, 2017, 204: 78-88. |
49 | NGUYEN Van Huy, NGUYEN Ba Son, HUANG Chaowei, et al. Photocatalytic NOx abatement: recent advances and emerging trends in the development of photocatalysts[J]. Journal of Cleaner Production, 2020, 270: 121912. |
50 | WU Hongxin, CHEN Dongyun, LI Najun, et al. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO[J]. Nanoscale, 2016, 8(23): 12066-12072. |
51 | HU Jundie, JI Yujin, MO Zhao, et al. Engineering black phosphorus to porous g-C3N4-metal-organic framework membrane: a platform for highly boosting photocatalytic performance[J]. Journal of Materials Chemistry A, 2019, 7(9): 4408-4414. |
52 | ZHANG Wendong, ZHAO Zaiwang, DONG Fan, et al. Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal[J]. Chinese Journal of Catalysis, 2017, 38(2): 372-378. |
53 | WANG Zhenyu, HUANG Yu, CHEN Meijuan, et al. Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NOx removal[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10651-10662. |
54 | FU Junwei, ZHU Bicheng, JIANG Chuanjia, et al. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Small, 2017, 13(15): 1603938. |
55 | WANG Yangang, XIA Qineng, BAI Xia, et al. Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2018, 239: 196-203. |
56 | SUN Zhimin, FANG Wei, ZHAO Lei, et al. 3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction[J]. Applied Surface Science, 2020, 504: 144347. |
57 | Man OU, TU Wenguang, YIN Shengming, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2018, 57(41): 13570-13574. |
58 | HUO Yao, ZHANG Jinfeng, DAI Kai, et al. All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 241: 528-538. |
59 | WANG Yanan, GUO Lina, ZENG Yiqing, et al. Amino-assisted NH2-UiO-66 anchored on porous g-C3N4 for enhanced visible-light-driven CO2 reduction[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30673-30681. |
60 | LI Pengyan, LIU Li, AN Weijia, et al. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol[J]. Applied Catalysis B: Environmental, 2020, 266: 118618. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[12] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |