化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3731-3744.DOI: 10.16085/j.issn.1000-6613.2021-1806
收稿日期:
2021-08-22
修回日期:
2022-01-19
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
王欢,杨东杰
作者简介:
张丽珠(1997—),女,硕士研究生。E-mail: 基金资助:
ZHANG Lizhu1(), WANG Huan2(), LI Qiong1, YANG Dongjie1()
Received:
2021-08-22
Revised:
2022-01-19
Online:
2022-07-25
Published:
2022-07-23
Contact:
WANG Huan,YANG Dongjie
摘要:
木质素是一种广泛存在于植物中的天然酚类高分子,具有来源广泛、含氧官能团丰富、含碳量高等优点。对木质素进行修饰改性、复合、热解炭化能够获得性能优异的木质素衍生吸附材料,在废水处理中具有广泛的应用前景。本文对木质素的分子结构特点进行了概述,总结了木质素基吸附剂的种类及其制备方法,详细介绍了木质素基吸附剂的修饰改性方法,如金属离子、含N、O、S官能团表面修饰以及复合改性等,并综述了木质素基吸附剂在染料、药物、重金属废水处理中的应用研究。最后,对木质素衍生吸附材料目前存在的问题以及未来的研究方向进行了总结和展望,如何实现木质素衍生吸附剂的可控制备和规模化生产,提高吸附剂在实际环境中的适用性是未来的主要研究内容。
中图分类号:
张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744.
ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744.
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
亚甲基蓝 | 80%乙醇不溶木质素 | 396.9 | [ |
亚甲基蓝 | 柠檬酸改性磁性介孔木质素基吸附剂 | 339.4 | [ |
亚甲基蓝 | 酚化改性交联木质素基吸附剂 | 99.4 | [ |
亚甲基蓝 | GO/碱木质素气凝胶 | 1185.9 | [ |
孔雀石绿 | GO/胺化木质素气凝胶 | 113.5 | [ |
亚甲基蓝 | 磺化木质素水凝胶 | 495 | [ |
表1 改性木质素吸附剂在吸附染料中的应用
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
亚甲基蓝 | 80%乙醇不溶木质素 | 396.9 | [ |
亚甲基蓝 | 柠檬酸改性磁性介孔木质素基吸附剂 | 339.4 | [ |
亚甲基蓝 | 酚化改性交联木质素基吸附剂 | 99.4 | [ |
亚甲基蓝 | GO/碱木质素气凝胶 | 1185.9 | [ |
孔雀石绿 | GO/胺化木质素气凝胶 | 113.5 | [ |
亚甲基蓝 | 磺化木质素水凝胶 | 495 | [ |
吸附质 | 原料 | 制备/改性方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
亚甲基蓝 | 酶解木质素 | Fe3O4模板炭化 | 16.4 | 621.5 | [ |
亚甲基蓝 | 酸水解分馏的低硫木质素 | 磷酸浸渍活化 | >2000 | 535.0 | [ |
亚甲基蓝 | 木质素磺酸钠 | 角叉菜胶模板凝胶-KOH炭化活化 | 594.6 | 421.9 | [ |
罗丹明B | 碱木质素 | 溶液冻干-300℃低温退火 | — | 156.4 | [ |
甲基橙 | 木质素 | 甲醛交联木质素-铁源复合-炭化 | — | 去除率97.7% | [ |
甲基橙 | 木质素 | 共沉淀复合-炭化法 | — | 113.0 | [ |
表2 木质素多孔炭在吸附染料中的应用
吸附质 | 原料 | 制备/改性方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
亚甲基蓝 | 酶解木质素 | Fe3O4模板炭化 | 16.4 | 621.5 | [ |
亚甲基蓝 | 酸水解分馏的低硫木质素 | 磷酸浸渍活化 | >2000 | 535.0 | [ |
亚甲基蓝 | 木质素磺酸钠 | 角叉菜胶模板凝胶-KOH炭化活化 | 594.6 | 421.9 | [ |
罗丹明B | 碱木质素 | 溶液冻干-300℃低温退火 | — | 156.4 | [ |
甲基橙 | 木质素 | 甲醛交联木质素-铁源复合-炭化 | — | 去除率97.7% | [ |
甲基橙 | 木质素 | 共沉淀复合-炭化法 | — | 113.0 | [ |
吸附质 | 原料 | 改性/制备方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
氯霉素 | 木质素磺酸钠 | 埃洛石模板-KOH活化 | 2320 | 1297.0 | [ |
磺胺二甲基嘧啶 | 木质酸磺酸钠 | SiO2模板-KOH活化 | 2784 | 869.6 | [ |
四环素 | 木质素磺酸钠 | NaCl模板-KOH活化 | 3505 | 1613.0 | [ |
环丙沙星 | 木质素磺酸钠 | GO模板-KOH活化 | 3223 | 980.4 | [ |
双氯芬酸 | 松木提取木质素 | 硫酸氧化- K2FeO4活化 | 457.4 | 159.7 | [ |
扑热息痛 | 硫酸盐黑液 | 单宁缩聚-水热交联-热解 | 101.0 | 73.6 | [ |
氟西汀 | 硫酸盐制浆初级污泥 | KOH活化 | 115 | 191.6 | [ |
表3 木质素多孔炭在吸附药物中的应用
吸附质 | 原料 | 改性/制备方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
氯霉素 | 木质素磺酸钠 | 埃洛石模板-KOH活化 | 2320 | 1297.0 | [ |
磺胺二甲基嘧啶 | 木质酸磺酸钠 | SiO2模板-KOH活化 | 2784 | 869.6 | [ |
四环素 | 木质素磺酸钠 | NaCl模板-KOH活化 | 3505 | 1613.0 | [ |
环丙沙星 | 木质素磺酸钠 | GO模板-KOH活化 | 3223 | 980.4 | [ |
双氯芬酸 | 松木提取木质素 | 硫酸氧化- K2FeO4活化 | 457.4 | 159.7 | [ |
扑热息痛 | 硫酸盐黑液 | 单宁缩聚-水热交联-热解 | 101.0 | 73.6 | [ |
氟西汀 | 硫酸盐制浆初级污泥 | KOH活化 | 115 | 191.6 | [ |
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
Pb2+ | 交联羧甲基木质素 | 302.3 | [ |
Cu2+ | 二硫代氨基甲酸酯改性木质素 | 175.9 | [ |
Ni2+ | 聚乙烯亚胺接枝硫酸盐木质素微球 | 49.4 | [ |
Cd2+ | 聚乙烯亚胺接枝木质素颗粒 | 54.3 | [ |
Pb2+ | 冠醚官能化木质素 | 91.4 | [ |
As (Ⅴ) | 三亚乙基四胺改性木质素 | 62.5 | [ |
Cr (Ⅵ) | 木质素磺酸盐/N-甲基苯胺复合物 | 1264.8 | [ |
表4 改性木质素吸附剂在吸附重金属离子中的应用
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
Pb2+ | 交联羧甲基木质素 | 302.3 | [ |
Cu2+ | 二硫代氨基甲酸酯改性木质素 | 175.9 | [ |
Ni2+ | 聚乙烯亚胺接枝硫酸盐木质素微球 | 49.4 | [ |
Cd2+ | 聚乙烯亚胺接枝木质素颗粒 | 54.3 | [ |
Pb2+ | 冠醚官能化木质素 | 91.4 | [ |
As (Ⅴ) | 三亚乙基四胺改性木质素 | 62.5 | [ |
Cr (Ⅵ) | 木质素磺酸盐/N-甲基苯胺复合物 | 1264.8 | [ |
类别 | 吸附剂 | 污染物 | 吸附容量 /mg·g-1 | 主要吸附机理 | 优缺点 | 参考文献 |
---|---|---|---|---|---|---|
木质素吸附剂 | GO/碱木质素气凝胶 | 亚甲基蓝 | 1185.9 | 氢键、π-π相互作用 | 原料可再生且来源广泛,易于修饰改性、制备功能化吸附材料 | [ |
交联羧甲基木质素 | Pb2+ | 302.3 | 羧基的离子交换 | [ | ||
二硫代氨基甲酸酯改性木质素 | Cu2+ | 175.9 | — | [ | ||
磷酸化碱木质素微球 | 左氧氟沙星、Pb2+ | 389.1、249.2 | 氢键、π-π相互作用、静电吸引、阳离子-π相互作用 | [ | ||
木质素多孔炭吸附剂 | 磷酸活化木质素多孔炭 | 亚甲基蓝 | 535.0 | — | 原料易得,碳产率高,材料结构可调控,吸附容量高 | [ |
模板炭化-活化木质素多孔炭 | 氯霉素 | 1297.0 | 氢键、π-π相互作用、范德华力 | [ | ||
层状木质素多孔炭 | Pb2+ | 250.5 | 静电吸引、络合作用、沉淀作用 | [ | ||
天然/半合成 高分子吸附剂 | 改性壳聚糖 | Cu2+、Cr6+ | 165.2、108.2 | 静电吸引 | 原料成本低、绿色、易生物降解;吸附容量较小 | [ |
纤维壳聚糖/纤维素复合材料 | Co2+ | 23.6 | — | [ | ||
β-环糊精-壳聚糖基交联吸附剂 | Hg (Ⅱ)、亚甲基蓝 | 178.3、 162.6 | 络合作用、氢键 | [ | ||
矿物类吸附剂 | 羟基磷灰石接枝磁性 膨润土 | Pb2+、Cd2+ | 482、309 | 静电吸引、络合作用、氢键 | 来源广泛、廉价;不易重复利用、吸附效率低 | [ |
酸改性高岭土 | Cu2+ | 38.7 | 静电吸引、沉淀作用 | [ | ||
氨基改性凹凸棒 | Pb2+、Cu2+ | 48.7、46.3 | 离子交换、静电作用 | [ | ||
合成高聚物 吸附剂 | 超支化聚氨酯 | Pb2+、Ni2+ | 236.5、217.5 | 络合作用 | 性质稳定,易于功能化改性;以不可再生的石化产品为原料,成本高 | [ |
三嗪基交联多胺树脂 | 甲基橙 | 620.5 | 氢键、静电吸引、疏水/ π-π相互作用 | [ | ||
磁性介孔间苯二酚-三聚氰胺-甲醛树脂 | 苯酚 | 243.3 | 氢键、疏水/π-π相互作用 | [ | ||
活性炭 | 椰壳活性炭 | 孔雀石绿 | 83.1 | 氢键、范德华力 | 吸附容量大;主要使用硬煤为原料,制备成本较高,不易再生利用 | [ |
沥青质多孔炭 | 亚甲基蓝 | 556.0 | — | [ | ||
核桃壳活性炭 | 刚果红 | 632 | — | [ | ||
氧化沥青基介孔炭 | 孔雀石绿、Pb2+ | 963.1、198.6 | π-π相互作用、氢键、络合作用、静电吸引 | [ | ||
生物质炭 | 玉米秸秆生物质炭 | Cd2+ | 73.22 | 阳离子-π相互作用、离子交换、沉淀作用 | 利用农林废弃物,原料成本低,制备简单;原料成分复杂,材料不均匀 | [ |
香蕉皮生物炭 | Pb2+、Cu2+ | 247.1、75.99 | 静电吸引、离子交换、沉淀作用、范德华力 | [ | ||
活性松木生物质炭 | 四环素 | 959.9 | 氢键、π-π相互作用 | [ | ||
核桃壳生物质炭 | 活性红141 | 130 | — | [ |
表5 木质素衍生吸附材料与其他吸附材料去除废水中污染物的比较
类别 | 吸附剂 | 污染物 | 吸附容量 /mg·g-1 | 主要吸附机理 | 优缺点 | 参考文献 |
---|---|---|---|---|---|---|
木质素吸附剂 | GO/碱木质素气凝胶 | 亚甲基蓝 | 1185.9 | 氢键、π-π相互作用 | 原料可再生且来源广泛,易于修饰改性、制备功能化吸附材料 | [ |
交联羧甲基木质素 | Pb2+ | 302.3 | 羧基的离子交换 | [ | ||
二硫代氨基甲酸酯改性木质素 | Cu2+ | 175.9 | — | [ | ||
磷酸化碱木质素微球 | 左氧氟沙星、Pb2+ | 389.1、249.2 | 氢键、π-π相互作用、静电吸引、阳离子-π相互作用 | [ | ||
木质素多孔炭吸附剂 | 磷酸活化木质素多孔炭 | 亚甲基蓝 | 535.0 | — | 原料易得,碳产率高,材料结构可调控,吸附容量高 | [ |
模板炭化-活化木质素多孔炭 | 氯霉素 | 1297.0 | 氢键、π-π相互作用、范德华力 | [ | ||
层状木质素多孔炭 | Pb2+ | 250.5 | 静电吸引、络合作用、沉淀作用 | [ | ||
天然/半合成 高分子吸附剂 | 改性壳聚糖 | Cu2+、Cr6+ | 165.2、108.2 | 静电吸引 | 原料成本低、绿色、易生物降解;吸附容量较小 | [ |
纤维壳聚糖/纤维素复合材料 | Co2+ | 23.6 | — | [ | ||
β-环糊精-壳聚糖基交联吸附剂 | Hg (Ⅱ)、亚甲基蓝 | 178.3、 162.6 | 络合作用、氢键 | [ | ||
矿物类吸附剂 | 羟基磷灰石接枝磁性 膨润土 | Pb2+、Cd2+ | 482、309 | 静电吸引、络合作用、氢键 | 来源广泛、廉价;不易重复利用、吸附效率低 | [ |
酸改性高岭土 | Cu2+ | 38.7 | 静电吸引、沉淀作用 | [ | ||
氨基改性凹凸棒 | Pb2+、Cu2+ | 48.7、46.3 | 离子交换、静电作用 | [ | ||
合成高聚物 吸附剂 | 超支化聚氨酯 | Pb2+、Ni2+ | 236.5、217.5 | 络合作用 | 性质稳定,易于功能化改性;以不可再生的石化产品为原料,成本高 | [ |
三嗪基交联多胺树脂 | 甲基橙 | 620.5 | 氢键、静电吸引、疏水/ π-π相互作用 | [ | ||
磁性介孔间苯二酚-三聚氰胺-甲醛树脂 | 苯酚 | 243.3 | 氢键、疏水/π-π相互作用 | [ | ||
活性炭 | 椰壳活性炭 | 孔雀石绿 | 83.1 | 氢键、范德华力 | 吸附容量大;主要使用硬煤为原料,制备成本较高,不易再生利用 | [ |
沥青质多孔炭 | 亚甲基蓝 | 556.0 | — | [ | ||
核桃壳活性炭 | 刚果红 | 632 | — | [ | ||
氧化沥青基介孔炭 | 孔雀石绿、Pb2+ | 963.1、198.6 | π-π相互作用、氢键、络合作用、静电吸引 | [ | ||
生物质炭 | 玉米秸秆生物质炭 | Cd2+ | 73.22 | 阳离子-π相互作用、离子交换、沉淀作用 | 利用农林废弃物,原料成本低,制备简单;原料成分复杂,材料不均匀 | [ |
香蕉皮生物炭 | Pb2+、Cu2+ | 247.1、75.99 | 静电吸引、离子交换、沉淀作用、范德华力 | [ | ||
活性松木生物质炭 | 四环素 | 959.9 | 氢键、π-π相互作用 | [ | ||
核桃壳生物质炭 | 活性红141 | 130 | — | [ |
104 | HAN Zhenwei, KONG Shunli, CHENG Jing, et al. Preparation of efficient carbon-based adsorption material using asphaltenes from asphalt rocks[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14785-14794. |
105 | CRINI G, LICHTFOUSE E, WILSON L D, et al. Conventional and non-conventional adsorbents for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 195-213. |
106 | WANG Rongzhong, HUANG Danlian, LIU Yunguo, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261: 265-271. |
107 | AHMAD Z, GAO Bin, MOSA A, et al. Removal of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. |
108 | DAI Yingjie, ZHANG Naixin, XING Chuanming, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review[J]. Chemosphere, 2019, 223: 12-27. |
109 | GONG Lang, WU Hongye, SHAN Xiangyi, et al. Facile fabrication of phosphorylated alkali lignin microparticles for efficient adsorption of antibiotics and heavy metal ions in water[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106574. |
110 | WANG Anqi, ZHENG Zhikeng, LI Ruiqi, et al. Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Green Energy & Environment, 2019, 4(4): 414-423. |
111 | LI Zichao, HANAFY H, ZHANG Lei, et al. Adsorption of Congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations[J]. Chemical Engineering Journal, 2020, 388: 124263. |
112 | ZHANG Xialan, LIN Qilang, LUO Shiyuan, et al. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion[J]. Applied Surface Science, 2018, 442: 322-331. |
113 | JANG H M, YOO S, CHOI Y K, et al. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar[J]. Bioresource Technology, 2018, 259: 24-31. |
1 | LU Yun, SUN Qingfeng, YANG Dongjiang, et al. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution[J]. Journal of Materials Chemistry, 2012, 22(27): 13548. |
2 | FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science, 2018, 93: 233-269. |
3 | SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: current trend, perspectives and opportunities[J]. Bioresource Technology, 2019, 272: 570-581. |
4 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
5 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of ligin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
6 | JIANG Chenglong, WANG Xiaohong, QIN Demeng, et al. Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes[J]. Journal of Hazardous Materials, 2019, 369: 50-61. |
7 | LIU Shuang, WEI Wenguang, WU Shubin, et al. Preparation of hierarchical porous activated carbons from different industrial lignin for highly efficient adsorption performance[J]. Journal of Porous Materials, 2020, 27(5): 1523-1533. |
8 | KRASUCKA P, PAN Bo, SIK OK Y, et al. Engineered biochar —A sustainable solution for the removal of antibiotics from water[J]. Chemical Engineering Journal, 2021, 405: 126926. |
114 | ZAZYCKI M A, GODINHO M, PERONDI D, et al. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions[J]. Journal of Cleaner Production, 2018, 171: 57-65. |
9 | XIANG Yujia, XU Zhangyi, WEI Yuyi, et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138. |
10 | 王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729. |
WANG Shuai, GAN Linhuo, Li LYU. Progress in preparation and application of lignin-derived mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3720-3729. | |
11 | LAURICHESSE S, AVÉROUS L. Chemical modification of lignins: towards biobased polymers[J]. Progress in Polymer Science, 2014, 39(7): 1266-1290. |
12 | JOFFRES B, LAURENTI D, CHARON N, et al. Thermochemical conversion of lignin for fuels and chemicals: a review[J]. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 2013, 68(4): 753-763. |
13 | CHATTERJEE S, CLINGENPEEL A, MCKENNA A, et al. Synthesis and characterization of lignin-based carbon materials with tunable microstructure[J]. RSC Adv., 2014, 4(9): 4743-4753. |
14 | TOOR M, KUMAR S S, MALYAN S K, et al. An overview on bioethanol production from lignocellulosic feedstocks[J]. Chemosphere, 2020, 242: 125080. |
15 | ZHANG Hao, ZHOU Haifeng. Industrial lignins: The potential for efficient removal of Cr(Ⅵ) from wastewater[J]. Environmental Science and Pollution Research, 2022, 29(7): 10467-10481. |
16 | JIN Yanqiao, CHENG Xiansu, ZHENG Zuanbin. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin[J]. Bioresource Technology, 2010, 101(6): 2046-2048. |
17 | LI Hao, YUAN Ze, XING Yuyu, et al. Acetone fractionation: a simple and efficient method to improve the performance of lignin for dye pollutant removal[J]. RSC Advances, 2019, 9(61): 35895-35903. |
18 | DAI Kun, ZHAO Gulin, KOU Jingwei, et al. Magnetic mesoporous sodium citrate modified lignin for improved adsorption of calcium ions and methylene blue from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105180. |
19 | ZHAO Wenwen, XIAO Lingping, SONG Guoyong, et al. From lignin subunits to aggregates: insights into lignin solubilization[J]. Green Chemistry, 2017, 19(14): 3272-3281. |
20 | SUI Wenjie, PANG Tairan, WANG Guanhua, et al. Stepwise ethanol-water fractionation of enzymatic hydrolysis lignin to improve its performance as a cationic dye adsorbent[J]. Molecules, 2020, 25(11): 2603. |
21 | WANG Qiaorui, ZHENG Chunli, SHEN Zhenxing, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water[J]. Chemical Engineering Journal, 2019, 359: 265-274. |
22 | SHI Xiaofeng, HONG Junmao, LI Junhua, et al. Excellent selectivity and high capacity of As (Ⅴ) removal by a novel lignin-based adsorbent doped with N element and modified with Ca2+ [J]. International Journal of Biological Macromolecules, 2021, 172: 299-308. |
23 | SHI Xiaofeng, WANG Chao, DONG Binbin, et al. Cu/N doped lignin for highly selective efficient removal of As(Ⅴ) from polluted water[J]. International Journal of Biological Macromolecules, 2020, 161: 147-154. |
24 | LI Yinliang, WU Miao, WANG Bo, et al. Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5523-5532. |
25 | KWAK H W, LEE H, LEE K H. Surface-modified spherical lignin particles with superior Cr (Ⅵ) removal efficiency[J]. Chemosphere, 2020, 239: 124733. |
26 | KLAPISZEWSKI Ł, SIWIŃSKA-STEFAŃSKA K, KOŁODYŃSKA D. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(Ⅱ)[J]. Chemical Engineering Journal, 2017, 314: 169-181. |
27 | XIAO Yali, DING Mingjie, WANG Ruijia, et al. Fabrication of mesoporous SiO2@SLS composite to remove organic pollutants: hydrogen bond-induced intriguing changes of solubility[J]. Journal of Nanoparticle Research, 2019, 21(1): 1-12. |
28 | ZHANG Yongchao, NI Shuzhen, WANG Xiaoju, et al. Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles[J]. Chemical Engineering Journal, 2019, 372: 82-91. |
29 | ZHAO Yumeng, SHAN Xiangcheng, AN Qingda, et al. Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture[J]. Chemical Engineering Journal, 2020, 398: 125561. |
30 | ZHAI Rui, HU Jinguang, CHEN Xiangxue, et al. Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal[J]. Bioresource Technology, 2020, 315: 123846. |
31 | WU Linjun, HUANG Siqi, ZHENG Jia, et al. Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel[J]. International Journal of Biological Macromolecules, 2019, 140: 538-545. |
32 | TAHARI N, DE HOYOS-MARTINEZ P L, ABDERRABBA M, et al. Lignin-montmorillonite hydrogels as toluene adsorbent[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125108. |
33 | MENG Yi, LI Chengxiang, LIU Xueqian, et al. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water[J]. Science of the Total Environment, 2019, 685: 847-855. |
34 | YAN Mingfang, HUANG Wenxing, LI Zhili. Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water[J]. International Journal of Biological Macromolecules, 2019, 136: 927-935. |
35 | CHEN FENGGUI, HU XI, TU XIAOHAN, et al. High-yield production of lignin-derived functional carbon nanosheet for dye adsorption[J]. Polymers, 2020, 12(4): 797. |
36 | GENG Shiyu, WEI Jiayuan, JONASSON S, et al. Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7432-7441. |
37 | COTORUELO L M, MARQUÉS M D, DÍAZ F J, et al. Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions[J]. Chemical Engineering Journal, 2012, 184: 176-183. |
38 | FU Kaifang, YUE Qinyan, GAO Baoyu, et al. Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation[J]. Chemical Engineering Journal, 2013, 228: 1074-1082. |
39 | ZHANG Liming, YOU Tingting, ZHOU Tian, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13918-13925. |
40 | SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: current trend, perspectives and opportunities[J]. Bioresource Technology, 2019, 272: 570-581. |
41 | DAI Jiangdong, XIE Atian, ZHANG Ruilong, et al. Scalable preparation of hierarchical porous carbon from lignin for highly efficient adsorptive removal of sulfamethazine antibiotic[J]. Journal of Molecular Liquids, 2018, 256: 203-212. |
42 | ZHANG Binpeng, YANG Dongjie, QIU Xueqing, et al. Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 220-227. |
43 | AGO M, BORGHEI M, HAATAJA J S, et al. Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes[J]. RSC Advances, 2016, 6(89): 85802-85810. |
44 | SAHA D, WARREN K E, NASKAR A K. Soft-templated mesoporous carbons as potential materials for oral drug delivery[J]. Carbon, 2014, 71: 47-57. |
45 | LIU Ruilin, LIU Yu, ZHOU Xinyu, et al. Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue[J]. Bioresource Technology, 2014, 154: 138-147. |
46 | QIN Hengfei, JIAN Ruihong, BAI Jirong, et al. Influence of molecular weight on structure and catalytic characteristics of ordered mesoporous carbon derived from lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. |
47 | VALERO-ROMERO M J, MÁRQUEZ-FRANCO E M, BEDIA J, et al. Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution[J]. Microporous and Mesoporous Materials, 2014, 196: 68-78. |
48 | FIERRO C M, GÓRKA J, ZAZO J A, et al. Colloidal templating synthesis and adsorption characteristics of microporous-mesoporous carbons from Kraft lignin[J]. Carbon, 2013, 62: 233-239. |
49 | LI Hui, YUAN Du, TANG Chunhua, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157. |
50 | ZHANG Binpeng, YANG Dongjie, QIU Xueqing, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
51 | HU Bo, WANG Kan, WU Liheng, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(7): 813-828. |
52 | SANGCHOOM W, MOKAYA R. Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1658-1667. |
53 | ATTA-OBENG E, DAWSON-ANDOH B, SEEHRA M S, et al. Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization[J]. Biomass and Bioenergy, 2017, 107: 172-181. |
54 | ZHAO Wenhui, LIN Xiaoyan, CAI Huaming, et al. Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium(VI)[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12745-12754. |
55 | 赵文慧. 模板法合成木质素水热炭微球及其铀吸附性能研究[D]. 绵阳: 西南科技大学, 2018. |
ZHAO Wenhui. Studies on synthesis of hydrothermal carbon microspheres from lignin by template method and the adsorption properties of uranium[D]. Mianyang: Southwest University of Science and Technology, 2018. | |
56 | SAHA D, VAN BRAMER S E, ORKOULAS G, et al. CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons[J]. Carbon, 2017, 121: 257-266. |
57 | ZHANG Ting, WEI Shuang, WATERHOUSE G I N, et al. Chromium (Ⅵ) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon[J]. Powder Technology, 2020, 360: 55-64. |
58 | GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371. |
59 | JING Xiangrong, WANG Yuanying, LIU Wujun, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J]. Chemical Engineering Journal, 2014, 248: 168-174. |
60 | 徐琰. 柠檬酸改性生物炭表征特性及其对亚甲基蓝吸附性能研究[D]. 长沙: 湖南大学, 2017. |
XU Yan. Characterization and adsorption properties of citric acid modified biochar[D]. Changsha: Hunan University, 2017. | |
61 | LI Yanfei, ZIMMERMAN A R, HE Feng, et al. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue[J]. Science of the Total Environment, 2020, 722: 137972. |
62 | Honghong LYU, GAO Bin, HE Feng, et al. Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms[J]. Environmental Pollution, 2018, 233: 54-63. |
63 | ZHU Shiyun, XU Jun, KUANG Yishan, et al. Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dyes[J]. Industrial Crops and Products, 2021, 159: 113071. |
64 | Honghong LYU, XIA Siyu, TANG Jingchun, et al. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+ [J]. Journal of Hazardous Materials, 2020, 384: 121357. |
65 | WU Qiong, YE Xiaoxia, Yuancai LYU, et al. Lignin-based magnetic activated carbon for p-arsanilic acid removal: applications and absorption mechanisms[J]. Chemosphere, 2020, 258: 127276. |
66 | HAN Tong, LU Xincheng, SUN Yunjuan, et al. Magnetic bio-activated carbon production from lignin via a streamlined process and its use in phosphate removal from aqueous solutions[J]. Science of the Total Environment, 2020, 708: 135069. |
67 | TALEB F, AMMAR M, MOSBAH M B, et al. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption[J]. Scientific Reports, 2020, 10: 11048. |
68 | WU Zijun, HUANG Wenxing, SHAN Xiangyi, et al. Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue[J]. International Journal of Biological Macromolecules, 2020, 143: 325-333. |
69 | CHEN Hang, LIU Tanglong, MENG Yi, et al. Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125281. |
70 | LI Jiarong, LI Hao, YUAN Ze, et al. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes[J]. International Journal of Biological Macromolecules, 2019, 135: 1171-1181. |
71 | WANG Yingying, ZHU Linli, WANG Xiaohong, et al. Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 321-330. |
72 | YANG Zhongzhi, GLEISNER R, MANN D H, et al. Lignin based activated carbon using H3PO4 activation[J]. Polymers, 2020, 12(12): 2829. |
73 | Dong LYU, LI Yao, WANG Lijuan. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal[J]. International Journal of Biological Macromolecules, 2020, 148: 979-987. |
74 | CHEN Fenggui, SHAHABADI S I S, ZHOU Dan, et al. Facile preparation of cross-linked lignin for efficient adsorption of dyes and heavy metal ions[J]. Reactive and Functional Polymers, 2019, 143: 104336. |
75 | QIN Hengfei, HUANG Yongkui, LIU Siyu, et al. Synthesis and properties of magnetic carbon nanocages particles for dye removal[J]. Journal of Nanomaterials, 2015, 2015: 604201. |
76 | MA Yingzhi, ZHENG Dafeng, MO Zhenye, et al. Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559: 226-234. |
77 | Yujie BEN, FU Caixia, HU Min, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review[J]. Environmental Research, 2019, 169: 483-493. |
78 | XIE Atian, DAI Jiangdong, CHEN Xiang, et al. Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in situ activation[J]. Chemical Engineering Journal, 2016, 304: 609-620. |
79 | CHANG Zhongshuai, DAI Jiangdong, XIE Atian, et al. From lignin to three-dimensional interconnected hierarchically porous carbon with high surface area for fast and superhigh-efficiency adsorption of sulfamethazine[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9367-9375. |
80 | XIE Atian, DAI Jiangdong, CHEN Yu, et al. NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline[J]. Advanced Powder Technology, 2019, 30(1): 170-179. |
81 | GE Wenna, ZHOU Zhiping, ZHANG Peng, et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 456-467. |
82 | TAM N T M, LIU Yunguo, BASHIR H, et al. Synthesis of porous biochar containing graphitic carbon derived from lignin content of forestry biomass and its application for the removal of diclofenac sodium from aqueous solution[J]. Frontiers in Chemistry, 2020, 8: 274. |
83 | MARTINS MOREIRA W, VIOTTI P V, GURGEL ADEODATO VIEIRA M, et al. Hydrothermal synthesis of biobased carbonaceous composite from a blend of kraft black liquor and tannin and its application to aspirin and paracetamol removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125597. |
84 | JARIA G, CALISTO V, GIL M V, et al. Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge[J]. Journal of Colloid and Interface Science, 2015, 448: 32-40. |
85 | LI Yuan, ZHAO Rubin, PANG Yuxia, et al. Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 187-194. |
86 | GE Yuanyuan, XIAO Duo, LI Zhili, et al. Correction: Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers[J]. Journal of Materials Chemistry A, 2015, 3(14): 7666. |
87 | POPOVIC A L, RUSMIROVIC J D, VELICKOVIC Z, et al. Novel amino-functionalized lignin microspheres: high performance biosorbent with enhanced capacity for heavy metal ion removal[J]. International Journal of Biological Macromolecules, 2020, 156: 1160-1173. |
88 | PENG Xiongyi, WU Zijun, LI Zhili. A bowl-shaped biosorbent derived from sugarcane bagasse lignin for cadmium ion adsorption[J]. Cellulose, 2020, 27(15): 8757-8768. |
89 | JIN Can, LIU Guifeng, WU Guomin, et al. Facile fabrication of crown ether functionalized lignin-based biosorbent for the selective removal of Pb(Ⅱ)[J]. Industrial Crops and Products, 2020, 155: 112829. |
90 | HUANG Chunde, SHI Xiaofeng, WANG Chao, et al. Boosted selectivity and enhanced capacity of As(Ⅴ) removal from polluted water by triethylenetetramine activated lignin-based adsorbents[J]. International Journal of Biological Macromolecules, 2019, 140: 1167-1174. |
91 | ZHOU Haifeng, SHI Xinxin, WU Weidong, et al. Facile preparation of lignosulfonate/N-methylaniline composite and its application in efficient removal of Cr(Ⅵ) from aqueous solutions[J]. International Journal of Biological Macromolecules, 2020, 154: 1194-1204. |
92 | JIN Yanqiao, ZENG Chaomin, Qiufeng LYU, et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin[J]. International Journal of Biological Macromolecules, 2019, 123: 50-58. |
93 | WANG Qiaorui, ZHENG Chunli, CUI Wei, et al. Adsorption of Pb2+ and Cu2+ ions on the CS2-modified alkaline lignin[J]. Chemical Engineering Journal, 2020, 391: 123581. |
94 | SILVA LAGE MOREIRA A L DA, DE SOUZA PEREIRA A, SPEZIALI M G, et al. Bifunctionalized chitosan: a versatile adsorbent for removal of Cu(Ⅱ) and Cr(Ⅵ) from aqueous solution[J]. Carbohydrate Polymers, 2018, 201: 218-227. |
95 | ZHUANG Shuting, ZHU Kunkun, WANG Jianlong. Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(Ⅱ) removal[J]. Journal of Cleaner Production, 2021, 285: 124911. |
96 | USMAN M, AHMED A, YU Bing, et al. Simultaneous adsorption of heavy metals and organic dyes by β-cyclodextrin-chitosan based cross-linked adsorbent[J]. Carbohydrate Polymers, 2021, 255: 117486. |
97 | AIN Q U, ZHANG Hanbing, YASEEN M, et al. Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(Ⅱ), Cd(Ⅱ), and crystal violet from aqueous solution[J]. Journal of Cleaner Production, 2020, 247: 119088. |
98 | CHAI J B, AU P I, MUBARAK N M, et al. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian Kaolin clay-based adsorbent[J]. Environmental Science and Pollution Research International, 2020, 27(12): 13949-13962. |
99 | XU Lei, LIU Yani, WANG Jingang, et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: kinetic, thermal dynamic and DFT studies[J]. Journal of Hazardous Materials, 2021, 404: 124140. |
100 | KALAIVANI S S, MUTHUKRISHNARAJ A, SIVANESAN S, et al. Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution[J]. Process Safety and Environmental Protection, 2016, 104: 11-23. |
101 | WAHEED A, KAZI I W, MANZAR M S, et al. Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: synthesis, isotherm and kinetic studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607: 125472. |
102 | HEYDARIPOUR J, GAZI M, OLADIPO A A, et al. A novel magnetic mesoporous resorcinol-melamine-formaldehyde resin for removal of phenols from aqueous solution[J]. Journal of Porous Materials, 2019, 26(5): 1249-1258. |
103 | QU Wenyuan, YUAN Tong, YIN Guojun, et al. Effect of properties of activated carbon on malachite green adsorption[J]. Fuel, 2019, 249: 45-53. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[3] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[4] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[5] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[6] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[7] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[8] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[9] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[10] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[11] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[12] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[13] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[14] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[15] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |