化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4667-4676.DOI: 10.16085/j.issn.1000-6613.2022-1879
收稿日期:
2022-10-10
修回日期:
2023-02-03
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
高彦静
作者简介:
高彦静(1969—),女,硕士,研究馆员,研究方向为材料学、情报分析、知识产权信息服务。E-mail:yjgao@mail.buct.edu.cn。
基金资助:
Received:
2022-10-10
Revised:
2023-02-03
Online:
2023-09-15
Published:
2023-09-28
Contact:
GAO Yanjing
摘要:
单原子催化剂具有独特的物理和化学特性,在一些化学反应中优于传统催化剂,单原子催化技术已取得了长足的进步,有望成为下一代催化剂。文章追溯了单原子催化剂的概念起源,并采用文献计量学和专利统计学方法,运用多维指标分析了单原子催化领域相关论文和专利。结果表明,单原子催化基础研究和开发应用研究均处于技术上升期,中国在单原子催化领域处于国际引领地位。在基础研究中,中国科学院、清华大学、美国能源部表现出了超强实力;在开发应用研究中,尽管中国专利的申请量占绝对优势,但美国政府部门已为单原子催化剂工业化做好专利布局。高价值专利中以Pt原子与碳材料载体组成的单原子催化剂为最多。最后指出单原子极限下精确调节催化材料是单原子催化剂工业化制备面临的挑战。
中图分类号:
高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676.
GAO Yanjing. Analysis of international research trend of single-atom catalysis technology[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676.
排名 | 机构 | 发文量 | 排名 | 机构 | 专利数量 |
---|---|---|---|---|---|
1 | 中国科技大学 | 384 | 1 | 中国科学院大连化学物理研究所 | 77 |
2 | 清华大学 | 339 | 2 | 北京化工大学 | 39 |
3 | 中科院大学 | 327 | 3 | 北京氦舶科技有限责任公司 | 35 |
4 | 美国能源部实验室 | 324 | 4 | 中国科学技术大学 | 34 |
5 | 中国科学院大连物理化学研究所 | 244 | 5 | 天津大学 | 30 |
6 | 中国科学院高能物理研究所 | 209 | 6 | 浙江大学 | 20 |
7 | 上海应用物理研究所 | 163 | 7 | 大连理工大学 | 19 |
8 | 中国科学院催化剂重点实验室 | 157 | 8 | 江南大学 | 14 |
9 | 北京化工大学 | 143 | 9 | SK创新股份有限公司 | 14 |
10 | 加州大学系统 | 142 | 10 | 联科华技术有限公司 | 13 |
11 | 天津大学 | 124 | 11 | 中山大学 | 12 |
12 | 南方科技大学 | 108 | 12 | 南京大学 | 12 |
13 | 郑州大学 | 106 | 13 | 埃克森美孚化学专利公司(美国) | 12 |
14 | 美国阿尔贡国家实验室 | 105 | 14 | 清华大学 | 12 |
15 | 中国科学院物理研究所 | 97 | 15 | 浙江工业大学 | 11 |
16 | 吉林大学 | 94 | 16 | 北京单原子催化科技有限公司 | 11 |
17 | 天津理工大学 | 90 | 17 | 华南理工大学 | 11 |
18 | 北京理工大学 | 89 | 18 | 中国科学院化学研究所 | 10 |
19 | 大连理工大学 | 87 | 19 | 河北工业大学 | 10 |
20 | 北京大学 | 87 | 20 | 中南大学 | 10 |
表1 科技论文和专利申请量TOP20排名(数据统计时间:2022年5月13日)
排名 | 机构 | 发文量 | 排名 | 机构 | 专利数量 |
---|---|---|---|---|---|
1 | 中国科技大学 | 384 | 1 | 中国科学院大连化学物理研究所 | 77 |
2 | 清华大学 | 339 | 2 | 北京化工大学 | 39 |
3 | 中科院大学 | 327 | 3 | 北京氦舶科技有限责任公司 | 35 |
4 | 美国能源部实验室 | 324 | 4 | 中国科学技术大学 | 34 |
5 | 中国科学院大连物理化学研究所 | 244 | 5 | 天津大学 | 30 |
6 | 中国科学院高能物理研究所 | 209 | 6 | 浙江大学 | 20 |
7 | 上海应用物理研究所 | 163 | 7 | 大连理工大学 | 19 |
8 | 中国科学院催化剂重点实验室 | 157 | 8 | 江南大学 | 14 |
9 | 北京化工大学 | 143 | 9 | SK创新股份有限公司 | 14 |
10 | 加州大学系统 | 142 | 10 | 联科华技术有限公司 | 13 |
11 | 天津大学 | 124 | 11 | 中山大学 | 12 |
12 | 南方科技大学 | 108 | 12 | 南京大学 | 12 |
13 | 郑州大学 | 106 | 13 | 埃克森美孚化学专利公司(美国) | 12 |
14 | 美国阿尔贡国家实验室 | 105 | 14 | 清华大学 | 12 |
15 | 中国科学院物理研究所 | 97 | 15 | 浙江工业大学 | 11 |
16 | 吉林大学 | 94 | 16 | 北京单原子催化科技有限公司 | 11 |
17 | 天津理工大学 | 90 | 17 | 华南理工大学 | 11 |
18 | 北京理工大学 | 89 | 18 | 中国科学院化学研究所 | 10 |
19 | 大连理工大学 | 87 | 19 | 河北工业大学 | 10 |
20 | 北京大学 | 87 | 20 | 中南大学 | 10 |
催化剂 | 金属单原子 | 载体 | 应用 | 参考文献 |
---|---|---|---|---|
Pt/FeO | Pt | Fe2O3 | 甲烷氧化 | [ |
Pt/TiN | Pt | TiN | PEM燃料电池 | [ |
Rh1/Al2O3 | Rh1 | Al2O3 | O2活化和CO氧化 | [ |
Pd-Cu/ Al2O3 | Pd/Cu | Al2O3 | 氢化反应 | [ |
Cu/CeO2 | Cu | CeO2 | 氧化还原 | [ |
Ag/MnO2 | Ag | MnO2多孔空心微球 | 光照下大肠杆菌的灭活 | [ |
Co-N-C | Co | N掺杂炭 | 降解污染物 | [ |
Ru3O2/rGO | Ru3O2 | rGO | 氧化脱氢 | [ |
Rh1/VO2 | Rh | VO2 | NH3BH3水解 | [ |
Fe-MoS2 | Fe | 2D MoS2 | 硝酸盐还原反应(环境污染) | [ |
Bi-N-4和Zn-N-4 | Bi/Zn | 氮掺杂炭 | Co2还原反应 | [ |
Pt1/HAP | Pt | hydroxyapatite | 氧化还原 | [ |
M1/TiO2 | Pd、Pt、Rh、Ir | TiO2 | 降低析氢能垒 | [ |
表2 部分单原子催化剂研究和应用
催化剂 | 金属单原子 | 载体 | 应用 | 参考文献 |
---|---|---|---|---|
Pt/FeO | Pt | Fe2O3 | 甲烷氧化 | [ |
Pt/TiN | Pt | TiN | PEM燃料电池 | [ |
Rh1/Al2O3 | Rh1 | Al2O3 | O2活化和CO氧化 | [ |
Pd-Cu/ Al2O3 | Pd/Cu | Al2O3 | 氢化反应 | [ |
Cu/CeO2 | Cu | CeO2 | 氧化还原 | [ |
Ag/MnO2 | Ag | MnO2多孔空心微球 | 光照下大肠杆菌的灭活 | [ |
Co-N-C | Co | N掺杂炭 | 降解污染物 | [ |
Ru3O2/rGO | Ru3O2 | rGO | 氧化脱氢 | [ |
Rh1/VO2 | Rh | VO2 | NH3BH3水解 | [ |
Fe-MoS2 | Fe | 2D MoS2 | 硝酸盐还原反应(环境污染) | [ |
Bi-N-4和Zn-N-4 | Bi/Zn | 氮掺杂炭 | Co2还原反应 | [ |
Pt1/HAP | Pt | hydroxyapatite | 氧化还原 | [ |
M1/TiO2 | Pd、Pt、Rh、Ir | TiO2 | 降低析氢能垒 | [ |
专利公开号 | 专利名称 | 许可人 | 被许可人 |
---|---|---|---|
US20120004098A1 | 高度分散的金属催化剂 | 萨凡纳河核能解决方案有限责任公司 | 美国能源部 |
US20200030774A1 | 使用集成在单片基板上的 TiO2纳米线阵列的低温柴油氧化催化剂 | 康涅狄格大学 | 美国能源部 |
US20210016256A1 | 用于稳定金属单原子和簇催化剂的功能性纳米级金属氧化物 | 美国亚利桑那州立大学 | 美国国家科学基金会 |
US20190276943A1 | 碳负载单原子二氧化碳还原电催化剂 | 芝加哥Argonne有限责任公司 | 美国能源部 |
表3 单原子催化技术许可专利
专利公开号 | 专利名称 | 许可人 | 被许可人 |
---|---|---|---|
US20120004098A1 | 高度分散的金属催化剂 | 萨凡纳河核能解决方案有限责任公司 | 美国能源部 |
US20200030774A1 | 使用集成在单片基板上的 TiO2纳米线阵列的低温柴油氧化催化剂 | 康涅狄格大学 | 美国能源部 |
US20210016256A1 | 用于稳定金属单原子和簇催化剂的功能性纳米级金属氧化物 | 美国亚利桑那州立大学 | 美国国家科学基金会 |
US20190276943A1 | 碳负载单原子二氧化碳还原电催化剂 | 芝加哥Argonne有限责任公司 | 美国能源部 |
专利公开号 | 单原子 | 载体 | 制备方法 | 应用领域 | 当前专利权人 | 价值评估/USD |
---|---|---|---|---|---|---|
JP2016195112A | Pt | 碳材料 | 浸渍 | 燃料电池、气体扩散电子 | 日本恩亿凯嘉股份有限公司 | 1970000 |
CN107008479A | Pt | α‑MoC1‑x | 高温裂解 | 醇类水相重整制氢 | 北京大学 | 660000 |
CN108480656A | Bi | 碳材料 | 水溶液还原 | 二氧化碳回收 | 中国科学院长春应用化学研究所 | 500000 |
US20120004098A1 | Pt | 活性炭 | 浸渍法 | 催化 | 萨凡纳河核能解决方案有限责任公司 | 340000 |
CN108067632A | 后Pt系元素 | 氧化铝新材料 | 浸渍法 | 催化 | 中国科学院大连化学物理研究所 | 340000 |
表4 全球单原子催化高价值专利TOP5
专利公开号 | 单原子 | 载体 | 制备方法 | 应用领域 | 当前专利权人 | 价值评估/USD |
---|---|---|---|---|---|---|
JP2016195112A | Pt | 碳材料 | 浸渍 | 燃料电池、气体扩散电子 | 日本恩亿凯嘉股份有限公司 | 1970000 |
CN107008479A | Pt | α‑MoC1‑x | 高温裂解 | 醇类水相重整制氢 | 北京大学 | 660000 |
CN108480656A | Bi | 碳材料 | 水溶液还原 | 二氧化碳回收 | 中国科学院长春应用化学研究所 | 500000 |
US20120004098A1 | Pt | 活性炭 | 浸渍法 | 催化 | 萨凡纳河核能解决方案有限责任公司 | 340000 |
CN108067632A | 后Pt系元素 | 氧化铝新材料 | 浸渍法 | 催化 | 中国科学院大连化学物理研究所 | 340000 |
1 | Hiphone, 道哥哥. 单原子催化之前世今生[EB/OL]. (2020-06-16) [2022-09-30]. |
HCPHONE, brother DAO. The development process of single-atom catalysis[EB/OL] . (2020-06-16) [2022-09-30]. | |
2 | LIANG Xiao, FU Ninghua, YAO Shuangchao, et al. The progress and outlook of metal single-atom-site catalysis[J]. Journal of the American Chemical Society, 2022, 144(40): 18155-18174. |
3 | MASCHMEYER Thomas, Fernando REY, SANKAR Gopinathan, et al. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica[J]. Nature, 1995, 378(6553): 159-162. |
4 | FU Q, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003, 301(5635): 935-938. |
5 | ZHANG Xin, SHI Hui, XU Boqing. Comparative study of Au/ZrO2 catalysts in CO oxidation and 1,3-butadiene hydrogenation[J]. Catalysis Today, 2007, 122(3/4): 330-337. |
6 | HACKETT Simon F J, BRYDSON Rik M, LEE A F, et al. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols[J]. Angewandte Chemie International Edition, 2007, 46(45): 8593-8596. |
7 | HU Linhua, SUN Keqiang, PENG Qing, et al. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation[J]. Nano Research, 2010, 3(5): 363-368. |
8 | QIAO Botao, WANG Aiqin, YANG Xiaofeng, et al. Single-atom catalysis of CO oxidation using Pt1/FeO x [J]. Nature Chemistry, 2011, 3(8): 634-641. |
9 | 张涛. 负载型金属催化剂——从纳米到亚纳米和单原子[C]. 中国化学会第29届学术年会. 北京, 2014: 3-4. |
ZHANG Tao. Supported metal catalysts: From nano to subnanoand single atoms[C]. Summary of the 29th Annual Academic Conference of the Chinese Chemical Society. Beijing, 2014: 3-4. | |
10 | 张宁强, 李伶聪, 黄星, 等. 单原子催化剂的研究进展[J]. 中国稀土学报, 2018, 36(5): 513-532. |
ZHANG Ningqiang, LI Lingcong, HUANG Xing, et al. Research progress of single-atom catalysis[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5): 513-532. | |
11 | 刘佳程,马廷灿.单原子催化国际研究态势分析[J/OL].世界科技研究与发展, 2022:1-13. . |
LIU Jiacheng, MA Tingcan.International research trend analysis of single-atom catalysis[J/OL]. World Sci-Tech R&D, 2022:1-13. . | |
12 | 谢智敏, 范晓波, 郭倩玲. 专利价值评估工具的有效性比较研究[J]. 现代情报, 2018, 38(4): 124-129. |
XIE Zhimin, FAN Xiaobo, GUO Qianling. An comparative study on the effectiveness of patent value evaluation tools[J]. Journal of Modern Information, 2018, 38(4): 124-129. | |
13 | THOMAS John Meurig, SAGHI Zineb, GAI Pratibha L. Can a single atom serve as the active site in some heterogeneous catalysts?[J]. Topics in Catalysis, 2011, 54(10/12): 588-594. |
14 | NAKAMURA Eiichi, KOSHINO Masanori, SAITO Takeshi, et al. Electron microscopic imaging of a single Group 8 metal atom catalyzing C—C bond reorganization of fullerenes[J]. Journal of the American Chemical Society, 2011, 133(36): 14151-14153. |
15 | XIAO Xin, WEST William L, RHODES William D. Highly dispersed metal catalyst: US20120004098[P]. 2012-01-05. |
16 | 段昊泓, 李亚栋. 一种自支撑的、单原子层厚的贵金属纳米片及其制备方法: CN102728849A[P]. 2013-09-18. |
DUAN Haohong, LI Yadong. Self-supporting noble metal nanosheet with equal thickness of monatomic layer and preparation method of nanosheet: CN102728849A[P]. 2013-09-18. | |
17 | ZHANG Renqin, LEE Tae-Hun, Yu Byung-Deok, et al. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16552-16557. |
18 | SONG Weiyu, Xintong LYU, GAO Yang, et al. Photocatalytic HER performance of TiO2-supported single atom catalyst based on electronic regulation: A DFT study[J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
19 | WANG Liangbing, LI Hongliang, ZHANG Wenbo, et al. Supported rhodium catalysts for ammonia-borane hydrolysis: Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms[J]. Angewandte Chemie International Edition, 2017, 56(17): 4712-4718. |
20 | XU Haodan, JIANG Ning, WANG Da, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways[J]. Applied Catalysis B: Environmental, 2020, 263: 118350. |
21 | LI Ji, ZHANG Yuan, LIU Chao, et al. 3.4% solar-to-ammonia efficiency from nitrate using Fe single atomic catalyst supported on MoS2 nanosheets[J]. Advanced Functional Materials, 2022, 32(18): 2108316. |
22 | Josef MYSLIVEČEK, Vladimir MATOLÍN, Iva MATOLÍNOVÁ. Heteroepitaxy of cerium oxide thin films on Cu(Ⅲ)[J]. Materials, 2015, 8(9): 6346-6359. |
23 | BOUCHER Matthew B, ZUGIC Branko, CLADARAS George, et al. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions[J].Physical Chemistry Chemical Physics, 2013, 15(29): 12187-12196. |
24 | 庄嘉豪, 王定胜. 单原子催化的关键进展与未来挑战[J].高等学校化学学报,2022,43(5): 25-41. |
ZHUANG Jiahao, WANG Dingsheng. Current advances and future challenges of single-atom catalysis[J]. Chemical Journal of Chinese Universities, 2022, 43(5): 25-41. | |
25 | 张宗超, 刘凯瑞. 一种在溶液中制备贵金属孤原子的方法及应用: CN108067632A[P]. 2019-11-08. |
ZHANG Zongchao, LIU Kairui. Method for preparing precious metal isolated atoms from solution and application of precious metal isolated atoms: CN108067632A[P]. 2019-11-08. | |
26 | 刘宇宙,谷得发.邻苯二酚衍生的多孔聚合物的制备及其负载高自旋单原子铁的光催化应用: CN112321804A[P]. 2022-04-12. |
LIU Yuzhou, GU Defa. Preparation of catechol-derived porous polymer and photocatalytic application of catechol-derived porous polymer loaded with high-spin monatomic iron: CN112321804A[P]. 2022-04-12. | |
27 | 邵志刚, 张洪杰, 曾亚超, 等. 燃料电池用致密铂单原子层催化的制备及电极和应用: CN106816614A[P]. 2017-06-09. |
SHAO Zhigang, ZHANG Hongjie, ZENG Yachao, et al. Preparation of dense platinum monoatomic layer catalyst electrode for fuel cell and application: CN106816614A[P]. 2017-06-09. | |
28 | MIURA Hiroki, ENDO Keisuke, OGAWA Ryoichi, et al. Supported palladium-gold alloy catalysts for efficient and selective hydrosilylation under mild conditions with isolated single palladium atoms in alloy nanoparticles as the main active site[J]. ACS Catalysis, 2017, 7(3): 1543-1553. |
29 | 吴健群, 胡锋平, 李一鸣, 等. 金属单原子催化剂稳定、制备与应用的研究进展[J]. 环境化学, 2022, 41(5): 1757-1775. |
WU Jianqun, HU Fengping, LI Yiming,et al.Research progress in stabilization, preparation and application of metal single atom catalysts[J]. Environmental Chemistry, 2022, 41(5): 1757-1775. | |
30 | GHOSH Tushar K, NAIR Nisanth N.Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: Mechanism, effects of hydration, oxidation state, and cluster size[J]. ChemCatChem, 2013, 5(7): 1811-1821. |
31 | XIA Dehua, LIU Huadan, XU Bohong, et al. Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E. coli under solar light[J]. Applied Catalysis B: Environmental, 2019, 245: 177-189. |
32 | LI Xinzhe, GUO Na, CHEN Zhongxin, et al. Atomically precise single metal oxide cluster catalyst with oxygen-controlled activity[J]. Advanced Functional Materials, 2022, 32(25): 2200933. |
33 | MENG Lingzhe, ZHANG Erhuan, PENG Haoyu, et al. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas[J].ChemCatChem, 2022, 14(7): e202101801. |
34 | YAN Hao, ZHAO Mingyue, FENG Xiang, et al. P O 4 3 - coordinated robust single-atom platinum catalyst for selective polyol oxidation[J]. Angewandte Chemie International Edition, 2022, 61(21): e202116059. |
35 | ZHANG Hanguang, HWANG Sooyeon, WANG Maoyu, et al. Single atomic iron catalysts for oxygen reduction in acidic media:Particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149. |
36 | GAO Jinghan, GAO Yan, LI Kai, et al. Searching for highly efficient multifunctional electrocatalysts based on the single metal doped graphitic carbon nitride[J]. Molecular Physics, 2021, 119(24): e1973606. |
37 | 汪婷婷. 铁单原子催化剂的可控合成及其CO2电催化还原制CO的性能研究[D]. 杭州: 浙江大学, 2021. |
WANG Tingting. Controllable synthesis of iron monoatomic catalyst and its catalytic reduction of CO2 to CO[D]. Hangzhou: Zhejiang University, 2021. | |
38 | GU Yu, XI Baojuan, TIAN Wenzhi, et al. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts[J]. Advanced Materials, 2021, 33(25): 2100429. |
39 | WANG Yuxuan, SU Hongyang, HE Yanghua, et al. Advanced electrocatalysts with single-metal-atom active sites[J]. Chemical Reviews, 2020, 120(21): 12217-12314. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |