化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3719-3730.DOI: 10.16085/j.issn.1000-6613.2021-1788
收稿日期:
2021-08-20
修回日期:
2021-10-17
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
张涛,邱凤仙
作者简介:
何美莹(2000—),女,硕士研究生,研究方向为材料化学。E-mail: 基金资助:
HE Meiying(), YUE Xuejie, ZHANG Tao(), QIU Fengxian()
Received:
2021-08-20
Revised:
2021-10-17
Online:
2022-07-25
Published:
2022-07-23
Contact:
ZHANG Tao,QIU Fengxian
摘要:
传统的石化能源利用率较低加剧了环境危机,低能耗的热管理材料应运而生。本文介绍了红外辐射调控技术的原理,综述了辐射选择性调控材料在建筑热管理和人体热管理领域的研究进展,并概述了两类材料红外性能的相关研究和应用进展。文中指出:辐射选择性调控材料是通过设计材料表面结构的光学特性,调节太阳辐射来实现辐射控温的。建筑热管理材料主要有透明涂层、颜料涂层和辐射冷却器等,不同的建筑围护结构对应不同的性能,如具有高太阳反射率和高红外发射率的辐射冷却器和颜料涂层大都应用在墙体和屋顶上,而窗户要为室内提供一定的照明,因此还需具有高太阳透过率;人体热管理材料主要是可穿戴织物,包括辐射散热织物、辐射保温织物和智能辐射织物,除了具有相应的辐射性能之外还应该具备普通织物所具有的柔韧性、透气性、抗菌性的特点。最后,本文从辐射调控材料的性能与实际应用相结合的角度展望了未来的研究方向。
中图分类号:
何美莹, 岳学杰, 张涛, 邱凤仙. 红外辐射调控原理及其在热管理应用中的材料研究进展[J]. 化工进展, 2022, 41(7): 3719-3730.
HE Meiying, YUE Xuejie, ZHANG Tao, QIU Fengxian. Infrared radiation control principle and its material research progress in thermal management application[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3719-3730.
类型 | 材料 | 制备工艺 | 性能参数 | 温度变化/℃ | 参考文献 |
---|---|---|---|---|---|
无机氧化物基 | Al-doped ZnO Sb-doped SnO2 ZnO/Ag ZnO/Ag/ZnO SiO2+TiO2 SiO2@TiO2 | 磁控溅射法 双滴定共沉淀法 水热法 磁控溅射法 喷涂法 溶剂热法 | Einf=41%;Tvis=81.8% Tvis=80.1%;R=76.7% Tvis=62%;R=90% E=9.6%;Tvis=87.1% R=90.7%;Einf=90.1% R=91.34% | — — — — -5~-8℃ — | [ [ [ [ [ [ |
复合氧化物 | Bi4Ti3O12 La2Mo2O7 | 水热法 丙烯酰胺凝胶技术 | R=95% R=61%~75% | -10℃ -4.5℃ | [ [ |
有机物基 | PMMA/TiO2 Cs0.32WO3/PMMA PEO PDMS PDMS Ag/PVB TPX PDMS/Si 3DPCA/SiO2 ZnO@ZIF-8 | 乳液聚合法 原位聚合法 静电纺丝工艺 快速镀膜法 — 喷涂法 — 电子束蒸发 相转化法 液相自组装法 | — R>90%;Tvis>70% R=96.3%;Einf=78% P=120W/m2 R=93%;Einf=94% Tvis=83%;R=69.8% R=96%;Einf=93% P=127W/m2 R=96%;Einf=95% R=90%;Einf=95% | -11.2℃ -9.6℃ -3~-5℃ -9.5℃或-11.0℃ -5℃或+18℃ — -2~-14℃ -8.2℃或-8.4℃ -6.2℃或-8.6℃ -7.6℃ | [ [ [ [ [ [ [ [ [ [ |
光子结构 | SiO2 SiO2/Si3N4 HfO2/SiO2/Ag Al2O3/Si3N4/SiO2 | 光刻法 — — 真空沉积法 | — Einf=80% R=97%;P=40.1W/m2 Einf=87% | -13℃ -11℃ -4.9℃ -8.2℃ | [ [ [ [ |
冷却织物 | PA6/SiO2 PE PDMS PDMS/PE PDMS/Al2O3 | — 纤维挤压工艺 — — — | — E=20% — Einf>96% Einf=96%;R=95% | -0.4~-1.7℃ -2.3℃ -5.6℃ -5~-6℃ -5.1℃ | [ [ [ [ [ |
保温织物 | Ag/纤维素/CNT PET/CNFs/NPs 丝素/氧化石墨烯 | 泡沫加工工艺; 磁控溅射法 静电纺丝法 同轴湿纺法; 冷冻干燥 | — — — | — +18℃ +2.6℃ | [ [ [ |
智能双模织物 | PE/C/Cu/PE MnO2/Ag ZrN/TiO2 PVDF/ZnO/CNT/Ag/PDMS | — 层层组装法; 磁控溅射法 磁控溅射法 喷涂法 | — R1=81.6%;R2=39.5% R=90%;Einf=70% Einf=89.2%;R=89.5% | ±6.5℃ +8.2℃或-1℃ +4℃或-22℃ 4~12℃或-8~-11℃ | [ [ [ [ |
表1 红外辐射调控材料性能汇总
类型 | 材料 | 制备工艺 | 性能参数 | 温度变化/℃ | 参考文献 |
---|---|---|---|---|---|
无机氧化物基 | Al-doped ZnO Sb-doped SnO2 ZnO/Ag ZnO/Ag/ZnO SiO2+TiO2 SiO2@TiO2 | 磁控溅射法 双滴定共沉淀法 水热法 磁控溅射法 喷涂法 溶剂热法 | Einf=41%;Tvis=81.8% Tvis=80.1%;R=76.7% Tvis=62%;R=90% E=9.6%;Tvis=87.1% R=90.7%;Einf=90.1% R=91.34% | — — — — -5~-8℃ — | [ [ [ [ [ [ |
复合氧化物 | Bi4Ti3O12 La2Mo2O7 | 水热法 丙烯酰胺凝胶技术 | R=95% R=61%~75% | -10℃ -4.5℃ | [ [ |
有机物基 | PMMA/TiO2 Cs0.32WO3/PMMA PEO PDMS PDMS Ag/PVB TPX PDMS/Si 3DPCA/SiO2 ZnO@ZIF-8 | 乳液聚合法 原位聚合法 静电纺丝工艺 快速镀膜法 — 喷涂法 — 电子束蒸发 相转化法 液相自组装法 | — R>90%;Tvis>70% R=96.3%;Einf=78% P=120W/m2 R=93%;Einf=94% Tvis=83%;R=69.8% R=96%;Einf=93% P=127W/m2 R=96%;Einf=95% R=90%;Einf=95% | -11.2℃ -9.6℃ -3~-5℃ -9.5℃或-11.0℃ -5℃或+18℃ — -2~-14℃ -8.2℃或-8.4℃ -6.2℃或-8.6℃ -7.6℃ | [ [ [ [ [ [ [ [ [ [ |
光子结构 | SiO2 SiO2/Si3N4 HfO2/SiO2/Ag Al2O3/Si3N4/SiO2 | 光刻法 — — 真空沉积法 | — Einf=80% R=97%;P=40.1W/m2 Einf=87% | -13℃ -11℃ -4.9℃ -8.2℃ | [ [ [ [ |
冷却织物 | PA6/SiO2 PE PDMS PDMS/PE PDMS/Al2O3 | — 纤维挤压工艺 — — — | — E=20% — Einf>96% Einf=96%;R=95% | -0.4~-1.7℃ -2.3℃ -5.6℃ -5~-6℃ -5.1℃ | [ [ [ [ [ |
保温织物 | Ag/纤维素/CNT PET/CNFs/NPs 丝素/氧化石墨烯 | 泡沫加工工艺; 磁控溅射法 静电纺丝法 同轴湿纺法; 冷冻干燥 | — — — | — +18℃ +2.6℃ | [ [ [ |
智能双模织物 | PE/C/Cu/PE MnO2/Ag ZrN/TiO2 PVDF/ZnO/CNT/Ag/PDMS | — 层层组装法; 磁控溅射法 磁控溅射法 喷涂法 | — R1=81.6%;R2=39.5% R=90%;Einf=70% Einf=89.2%;R=89.5% | ±6.5℃ +8.2℃或-1℃ +4℃或-22℃ 4~12℃或-8~-11℃ | [ [ [ [ |
1 | KOLÅS T, RØYSET A, GRANDCOLAS M, et al. Cool coatings with high near infrared transmittance for coil coated aluminium[J]. Solar Energy Materials and Solar Cells, 2019, 196: 94-104. |
2 | CHI F A, XU L M, PENG C H. Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving[J]. Applied Energy, 2020, 266: 114865. |
3 | LI X Q, SUN B W, SUI C X, et al. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings[J]. Nature Communications, 2020, 11: 6101. |
4 | NIE W, TONG Q D, LI Q Q, et al. From waste to functional materials: a multifunctional electromagnetic interference shielding composite from waste rock wool[J]. ACS Applied Electronic Materials, 2021, 3(5): 2187-2194. |
5 | BOBROVA E, PILIPENKO A, ZHUKOV A. Insulating sheath system and energy efficiency of buildings[J] . E3S Web of Conferences, 2019, 91: 02019. |
6 | PENG Y C, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742. |
7 | KHANDELWAL H, SCHENNING A P H J, DEBIJE M G. Infrared regulating smart window based on organic materials[J]. Advanced Energy Materials, 2017, 7(14): 1602209. |
8 | KE Y J, BALIN I, WANG N, et al. Two-dimensional SiO2/VO2 photonic crystals with statically visible and dynamically infrared modulated for smart window deployment[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33112-33120. |
9 | JEONG S M, AHN J, CHOI Y K, et al. Development of a wearable infrared shield based on a polyurethane-antimony tin oxide composite fiber[J]. NPG Asia Materials, 2020, 12: 32. |
10 | HOSSAIN M M, GU M. Radiative cooling: principles, progress, and potentials[J]. Advanced Science, 2016, 3(7): 1500360. |
11 | CHEN J, WEI H, BAO H, et al. Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31402-31410. |
12 | 吴洋.红外辐射材料及其应用[J]. 佛山陶瓷, 2018, 28(5): 1-4. |
WU Yang. Infrared radiation material and its application[J]. Foshan Ceramics, 2018, 28(5): 1-4. | |
13 | WU Y P, KRISHNAN P, ZHANG M H, et al. Using photocatalytic coating to maintain solar reflectance and lower cooling energy consumption of buildings[J]. Energy and Buildings, 2018, 164: 176-186. |
14 | 任首龙, 陆庭中, 唐波,等. 辐射冷却材料研究进展[J]. 化工进展, 2022, 41(4): 1982-1993. |
REN Shoulong, LU Tingzhong, TANG Bo, et al. Research progress on radiative cooling materials[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1982-1993. | |
15 | LEI J W, KUMARASAMY K, ZINGRE K T, et al. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics[J]. Applied Energy, 2017, 190: 57-63. |
16 | LIU J, ZHOU Z, ZHANG J, et al. Advances and challenges in commercializing radiative cooling[J]. Materials Today Physics, 2019, 11: 100161. |
17 | KIM H, MCSHERRY S, BROWN B, et al. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43553-43559. |
18 | 徐冰洁, 陈琦, 刘鹏飞, 等. 高发射率红外辐射材料的研究进展[J]. 功能材料, 2018, 49(12): 12062-12070. |
XU Bingjie, CHEN Qi, LIU Pengfei, et al. Progress and prospect of high emissivity infrared radiation materials[J]. Journal of Functional Materials, 2018, 49(12): 12062-12070. | |
19 | LI H, ZHAO J, LI M X, et al. Performance analysis of passive cooling for photovoltaic modules and estimation of energy-saving potential[J]. Solar Energy, 2019, 181: 70-82. |
20 | DONG S M, QUEK J Y, VAN HERK A M, et al. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17901-17910. |
21 | 陈亚君, 陕绍云, 贾庆明, 等. 纳米锡基隔热透明涂料研究进展[J]. 化工新型材料, 2019, 47(12): 22-26. |
CHEN Yajun, SHAN Shaoyun, JIA Qingming, et al. Research advance of nano tin-based thermal insulation coating[J]. New Chemical Materials, 2019, 47(12): 22-26. | |
22 | LIU J X, RAN S, FAN C Y, et al. One pot synthesis of Pt-doped Cs x WO3 with improved near infrared shielding for energy-saving film applications[J]. Solar Energy, 2019, 178: 17-24. |
23 | CHEN Y H, SHIH F Y, LEE M T, et al. Development of lightweight energy-saving glass and its near-field electromagnetic analysis[J]. Energy, 2020, 193: 116812. |
24 | WEI G Y, DING J C, ZHANG T, et al. In situ fabrication of ZnO nanorods/Ag hybrid film with high mid-infrared reflectance for applications in energy efficient windows[J]. Optical Materials, 2019, 94: 322-329. |
25 | ZHAO H X, SUN Q Q, ZHOU J, et al. Switchable cavitation in silicone coatings for energy-saving cooling and heating[J]. Advanced Materials, 2020, 32(29): 2000870. |
26 | LIN S, WANG H Y, ZHANG X N, et al. Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows[J]. Nano Energy, 2019, 62: 111-116. |
27 | GUO T C, XU G Y, TAN S J, et al. Controllable synthesis of ZnO with different morphologies and their morphology-dependent infrared emissivity in high temperature conditions[J]. Journal of Alloys and Compounds, 2019, 804: 503-510. |
28 | SUN K W, TANG X F, YANG C L, et al. Preparation and performance of low-emissivity Al-doped ZnO films for energy-saving glass[J]. Ceramics International, 2018, 44(16): 19597-19602. |
29 | SHEN B X, WANG Y H, LU L, et al. Synthesis and characterization of Sb-doped SnO2 with high near-infrared shielding property for energy-efficient windows by a facile dual-titration co-precipitation method[J]. Ceramics International, 2020, 46(11): 18518-18525. |
30 | DANG S C, YI Y, YE H. A visible transparent solar infrared reflecting film with a low long-wave emittance[J]. Solar Energy, 2020, 195: 483-490. |
31 | YAO Y J, CHEN Z, WEI W, et al. Cs0.32WO3/PMMA nanocomposite via in situ polymerization for energy saving windows[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110656. |
32 | LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2021, 16(2): 153-158. |
33 | ZHOU L, SONG H M, LIANG J W, et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling[J]. Nature Sustainability, 2019, 2(8): 718-724. |
34 | 李培, 秦亮, 何红, 等. 含SiO2/SiC可昼夜降温辐射冷却膜的制备与实验研究[J]. 材料导报, 2021, 35(14): 14185-14189. |
LI Pei, QIN Liang, HE Hong, et al. Preparation and experimental study of radiation cooling film with SiO2/SiC[J]. Materials Reports, 2021, 35(14): 14185-14189. | |
35 | ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. PNAS, 2015, 112(40): 12282-12287. |
36 | YAO K Q, MA H C, HUANG M, et al. Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling[J]. ACS Applied Nano Materials, 2019, 2(9): 5512-5519. |
37 | RAMAN A P, ANOMA M A, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544. |
38 | CHAE D, KIM M, JUNG P H, et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073-8081. |
39 | YUAN J C, YIN H L, CAO P, et al. Daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces[J]. Energy for Sustainable Development, 2020, 57: 22-31. |
40 | KOU J L, JURADO Z, CHEN Z, et al. Daytime radiative cooling using near-black infrared emitters[J]. ACS Photonics, 2017, 4(3): 626-630. |
41 | XIANG B, ZHANG R, LUO Y L, et al. 3D Porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600. |
42 | KANG H J, QIAO Y D, LI Y, et al. Keep cool: polyhedral ZnO@ZIF-8 polymer coatings for daytime radiative cooling[J]. Industrial & Engineering Chemistry Research, 2020, 59(34): 15226-15232. |
43 | BAO H, YAN C, WANG B X, et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling[J]. Solar Energy Materials and Solar Cells, 2017, 168: 78-84. |
44 | 王小海, 郜学云, 刘跃进, 等. 钛白粉的性能及其在涂料中的应用[J]. 石化技术, 2019, 26(6): 171, 181. |
WANG Xiaohai, GAO Xueyun, LIU Yuejin, et al. Performance of titanium dioxide pigment and its application in paints[J]. Petrochemical Industry Technology, 2019, 26(6): 171, 181. | |
45 | BAO Y, GUO R Y, MA J Z. Hierarchical flower-like hollow SiO2@TiO2 spheres with enhanced thermal insulation and ultraviolet resistance performances for building coating[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24250-24261. |
46 | 张毅鹏. 分析彩色建筑节能涂料的制备和性能[J]. 建材与装饰, 2020(17): 96-97. |
ZHANG Yipeng. Preparation and performance of color building energy-saving paints[J]. Construction Materials & Decoration, 2020(17): 96-97. | |
47 | MEENAKSHI P, SELVARAJ M. Bismuth titanate as an infrared reflective pigment for cool roof coating[J]. Solar Energy Materials and Solar Cells, 2018, 174: 530-537. |
48 | HAN A J, YE M Q, LIU L L, et al. Estimating thermal performance of cool coatings colored with high near-infrared reflective inorganic pigments: iron doped La2Mo2O7 compounds[J]. Energy and Buildings, 2014, 84: 698-703. |
49 | RAN S, LIU J X, SHI F, et al. Greatly improved heat-shielding performance of K x WO3 by trace Pt doping for energy-saving window glass applications[J]. Solar Energy Materials and Solar Cells, 2018, 174: 342-350. |
50 | MA Y, CHEN Y, WANG Z F, et al. Controllable near-infrared reflectivity and infrared emissivity with substitutional iron-doped orthorhombic YMnO3 coatings[J]. Solar Energy, 2020, 206: 778-786. |
51 | LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763. |
52 | JIA C, CHEN C J, MI R Y, et al. Clear wood toward high-performance building materials[J]. ACS Nano, 2019, 13(9): 9993-10001. |
53 | HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023. |
54 | 陈凤琴, 魏娟. 柔性可穿戴纺织传感器的研究进展[J]. 上海纺织科技, 2021, 49(6): 13-18, 42. |
CHEN Fengqin, WEI Juan. Research progress of flexible wearable textile sensors[J]. Shanghai Textile Science & Technology, 2021, 49(6): 13-18, 42. | |
55 | ZHANG H W, LY K C S, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. PNAS, 2020, 117(26): 14657-14666. |
56 | YANG M, ZOU W Z, GUO J, et al. Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25286-25293. |
57 | DAI B, LI K, SHI L X, et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019, 31(41): 1904113. |
58 | XIAO R C, HOU C Y, YANG W F, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44673-44681. |
59 | PENG Y C, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112. |
60 | WU W C, LIN S H, WEI M M, et al. Flexible passive radiative cooling inspired by Saharan silver ants[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110512. |
61 | ZENG S H, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021,373(6555): 692-696. |
62 | YUE X J, HE M Y, ZHANG T, et al. Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12285-12293. |
63 | QIU K L, ELHASSAN A, TIAN T H, et al. Highly flexible, efficient, and sandwich-structured infrared radiation heating fabric[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 11016-11025. |
64 | WANG Z Q, YANG H W, LI Y, et al. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15726-15736. |
65 | HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017, 3(11): e1700895. |
66 | GU B, HE M Y, YANG D Y, et al. Wearable Janus MnO2 hybrid membranes for thermal comfort management applications[J]. Applied Surface Science, 2020, 509: 145170. |
67 | QIU S, JIA H, JIANG S X. Fabrication and characterization of thermal management fabric with heating and cooling modes through magnetron sputtering[J]. Materials Letters, 2021, 300: 130217. |
68 | SONG Y N, LEI M Q, HAN D L, et al. Multifunctional membrane for thermal management applications[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19301-19311. |
69 | GAO Q, WU X M, CAI L G. Dual functionality of K0.3WO3/Ag2O nanocomposites for smart window: energy saving and visible photocatalytic self-cleaning performance[J]. Solar Energy Materials and Solar Cells, 2019, 196: 111-118. |
[1] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[2] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[3] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[4] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[5] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[6] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[7] | 李雪, 王艳君, 王玉超, 陶胜洋. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503. |
[8] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[9] | 杜涛, 马进伟, 陈茜茜, 方浩, 陈秉章, 陈厚仁. PV/T模块复合冷却模式性能对比测试与数值模拟分析[J]. 化工进展, 2023, 42(2): 722-730. |
[10] | 胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883. |
[11] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[12] | 顾海洋, 王冬, 宗永忠, 付少海. 制革污泥蛋白质基生物质棉织物阻燃涂层的制备与阻燃性能[J]. 化工进展, 2023, 42(2): 641-649. |
[13] | 韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146. |
[14] | 辛华, 彭琪, 李阳帆, 张岩, 陈悦, 李新琦. 含氟聚氨酯二甲基丙烯酸酯为芯材的微胶囊制备及自修复性能[J]. 化工进展, 2023, 42(10): 5406-5413. |
[15] | 白浩良, 王晨, 卢静, 康雪. 聚光光伏系统太阳能电池散热技术及发展现状[J]. 化工进展, 2023, 42(1): 159-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |