化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4296-4306.DOI: 10.16085/j.issn.1000-6613.2022-1797
收稿日期:
2022-09-26
修回日期:
2022-11-07
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
安浩然
作者简介:
王帅晴(1999—),女,硕士研究生,研究方向为生物质炭材料储能应用。E-mail:wangshuaiqing55@163.com。
基金资助:
WANG Shuaiqing(), YANG Siwen, LI Na, SUN Zhanying, AN Haoran()
Received:
2022-09-26
Revised:
2022-11-07
Online:
2023-08-15
Published:
2023-09-19
Contact:
AN Haoran
摘要:
在“双碳”目标的背景下,新型生物质炭材料的开发及其在电化学储能领域中的应用引起了人们广泛的关注。在各种优化生物质炭材料性能的方法中,元素掺杂能够解决比容量低、稳定性差的问题,为提高生物质炭材料电化学性能提供了一种简单、有效的方法和策略。本文从植物基、动物基和微生物基三方面介绍了元素掺杂生物质炭材料的来源,并根据掺杂元素的种数将元素掺杂生物质炭材料归纳为单元素掺杂和多元素共掺杂。回顾了元素掺杂生物质炭材料在超级电容器、锂离子电池、钠离子电池、锂硫电池等电化学储能器件中的应用,在此基础上分析了其化学组成和微观结构对电化学性能的影响。同时对其今后的发展和商业化前景做出展望,指出掺杂元素的种类和含量的调控、制备方法和工艺的优化、生物质自掺杂属性的激活仍是目前亟待解决的问题和未来的发展方向。
中图分类号:
王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306.
WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306.
种类 | 原料 | 掺杂种类和试剂 | 掺杂元素 | 杂原子含量 | 形貌结构 | 应用 | 电化学性能 | 参考文献 |
---|---|---|---|---|---|---|---|---|
植物基 | 豆浆 | 自掺杂 | N | 7.15%(原子分数) | 炭纳米片 | LIBs | 0.05A/g下100次循环后1084.2mAh/g | [ |
植物基 | 甘蔗渣 | 外源掺杂(尿素) | N | 7.58%(原子分数) | 多孔炭 | Li-S | 0.5C下400次循环后571.5mAh/g | [ |
植物基 | 花粉 | 外源掺杂(尿素) | N | 4.60%(原子分数) | 多孔炭 | SCs | 1A/g下300F/g(6mol/L KOH) | [ |
植物基 | 菜籽饼 | 外源掺杂 (三聚氰胺) | N | 3.48 | 多孔炭 | SCs | 0.05A/g下274F/g(6mol/L KOH) | [ |
植物基 | 竹子 | 外源掺杂(硫粉) | S | 8.28%(原子分数) | 棒状纤维 | KIBs | 0.2A/g下300次循环后203.8mAh/g | [ |
植物基 | 药渣 | 外源掺杂 (硫代乙酰胺) | S | 6.7%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后710mAh/g | [ |
植物基 | 棕榈花 | 外源掺杂(硫脲) | S | 9.86%(质量分数) | 片状多孔炭 | SCs | 1A/g下275F/g(1mol/L H2SO4) | [ |
植物基 | 椴木 | 外源掺杂(植酸) | P | 9.24%(原子分数) | 多孔炭 | SCs | 1mA/cm2下206.5F/g(6mol/L KOH) | [ |
植物基 | 锯末 | 外源掺杂(磷酸) | P | — | 多孔炭 | SCs | 0.1A/g下292F/g(1mol/L H2SO4) | [ |
植物基 | 向日葵 | 自掺杂 | O | 21%(质量分数) | 多孔炭 | SCs | 1A/g下345F/g(6mol/L KOH) | [ |
植物基 | 玉米秸秆 | 自掺杂 | O | 10.68%(原子分数) | 多孔炭片 | SCs | 1A/g下407F/g(1mol/L H2SO4) | [ |
植物基 | 甘蔗渣 | 外源掺杂 (NH4H2PO4) | N、P | 1.87%、1.03% (原子分数) | 片状多孔炭 | LIBs | 0.1A/g下50次循环后816.36mAh/g | [ |
植物基 | 玉米秸秆 | 外源掺杂 (NH4H2PO4) | N、P | 0.90%、1.82% (原子分数) | 折叠层状 | SIBs | 0.25C下100次循环后277mAh/g | [ |
植物基 | 稻壳 | 外源掺杂(硫脲) | S、N | 5.34%、4.85%(质量分数) | 多孔炭 | LIBs | 1A/g下1200次循环后632mAh/g | [ |
植物基 | 刀豆壳 | 外源掺杂 (NH4B5O8·4H2O) | N、B | 2.03%、3.12% (质量分数) | 多孔炭 | SCs | 1A/g下369F/g(6mol/L KOH) | [ |
植物基 | 木材 | 外源掺杂 (硼酸、氨水) | B、N | — | 多孔炭 | SCs | 0.2A/g下318F/g(1mol/L H2SO4) | [ |
植物基 | 小麦粉 | 外源掺杂 (尿素、碘化钾) | N、I | 1.30%、0.65% (原子分数) | 多孔炭 | Li-S | 0.1C下100次循环后 916.7mAh/g | [ |
植物基 | 药渣 | 外源掺杂(三聚氰胺、硫代乙酰胺) | S、N | 8.8%、4.6%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后1060mAh/g | [ |
植物基 | 淀粉 | 外源掺杂 (尿素、H2S) | S、N | 2.11%、5.22% (原子分数) | 多孔炭 | SIBs | 8A/g下3000次循环后156mAh/g | [ |
植物基 | 豆渣 | 自掺杂 | N、O | 2.02%、8.04%(原子分数) | 多孔炭 | Li-S | 1C下600次循环后435.7mAh/g | [ |
植物基 | 榕树根 | 自掺杂 | N、O | 15.17%、1.0%(质量分数) | 层状多孔炭 | Li-S | 0.1C下200次循环后1047mAh/g | [ |
动物基 | 甲壳素 | 自掺杂 | N | 7.29%(原子分数) | 纳米纤维 | SIBs | 0.05A/g下50次循环后320.6mAh/g | [ |
动物基 | 乌贼 | 自掺杂 | N | 9.72%(原子分数) | 纳米球形 | LICs | 1A/g下1000次循环后218.4mAh/g | [ |
动物基 | 猪骨 | 自掺杂 | N、P | 3.42%、0.25%(质量分数) | 多孔炭 | LIBs | 0.5A/g下500次循环后640mAh/g | [ |
动物基 | 鱼皮 | 自掺杂 | N、O、S | 14.02%、8.18%、2.25% (原子分数) | 炭纳米片 | SCs | 0.1A/g下438F/g(6mol/L KOH) | [ |
动物基 | 山羊毛 | 自掺杂 | N、O、P | 3.70%、5.69%、3.37% (原子分数) | 多孔炭 | Li-S | 0.2C下300次循环后489mAh/g | [ |
动物基 | 豆虫 | 自掺杂 | N、O、 P、S | 4.36%、12.86%、0.21%、0.23%(原子分数) | 多孔炭 | SCs | 0.1A/g下371.8F/g(6mol/L KOH) | [ |
微生物基 | 浮萍 | 自掺杂 | N | 4.31%(原子分数) | 多孔炭 | LIBs | 0.1A/g下100次循环后1071mAh/g | [ |
微生物基 | 黑曲霉菌 | 外源掺杂(NH3) | N | — | 管状多孔炭 | SCs | 1A/g下298F/g(6mol/L KOH) | [ |
微生物基 | 细菌纤维素 | 外源掺杂(N3P3Cl6) | N、P | 2.82%、2.76%(原子分数) | 多孔炭 | SIBs | 0.1A/g下150次循环后199mAh/g | [ |
微生物基 | 海带 | 自掺杂 | S、N | 9.12%、4.52%(质量分数) | 炭纳米片 | SIBs | 0.1A/g下300次循环后214mAh/g | [ |
表1 元素掺杂生物质碳材料组成、结构及其电化学储能应用
种类 | 原料 | 掺杂种类和试剂 | 掺杂元素 | 杂原子含量 | 形貌结构 | 应用 | 电化学性能 | 参考文献 |
---|---|---|---|---|---|---|---|---|
植物基 | 豆浆 | 自掺杂 | N | 7.15%(原子分数) | 炭纳米片 | LIBs | 0.05A/g下100次循环后1084.2mAh/g | [ |
植物基 | 甘蔗渣 | 外源掺杂(尿素) | N | 7.58%(原子分数) | 多孔炭 | Li-S | 0.5C下400次循环后571.5mAh/g | [ |
植物基 | 花粉 | 外源掺杂(尿素) | N | 4.60%(原子分数) | 多孔炭 | SCs | 1A/g下300F/g(6mol/L KOH) | [ |
植物基 | 菜籽饼 | 外源掺杂 (三聚氰胺) | N | 3.48 | 多孔炭 | SCs | 0.05A/g下274F/g(6mol/L KOH) | [ |
植物基 | 竹子 | 外源掺杂(硫粉) | S | 8.28%(原子分数) | 棒状纤维 | KIBs | 0.2A/g下300次循环后203.8mAh/g | [ |
植物基 | 药渣 | 外源掺杂 (硫代乙酰胺) | S | 6.7%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后710mAh/g | [ |
植物基 | 棕榈花 | 外源掺杂(硫脲) | S | 9.86%(质量分数) | 片状多孔炭 | SCs | 1A/g下275F/g(1mol/L H2SO4) | [ |
植物基 | 椴木 | 外源掺杂(植酸) | P | 9.24%(原子分数) | 多孔炭 | SCs | 1mA/cm2下206.5F/g(6mol/L KOH) | [ |
植物基 | 锯末 | 外源掺杂(磷酸) | P | — | 多孔炭 | SCs | 0.1A/g下292F/g(1mol/L H2SO4) | [ |
植物基 | 向日葵 | 自掺杂 | O | 21%(质量分数) | 多孔炭 | SCs | 1A/g下345F/g(6mol/L KOH) | [ |
植物基 | 玉米秸秆 | 自掺杂 | O | 10.68%(原子分数) | 多孔炭片 | SCs | 1A/g下407F/g(1mol/L H2SO4) | [ |
植物基 | 甘蔗渣 | 外源掺杂 (NH4H2PO4) | N、P | 1.87%、1.03% (原子分数) | 片状多孔炭 | LIBs | 0.1A/g下50次循环后816.36mAh/g | [ |
植物基 | 玉米秸秆 | 外源掺杂 (NH4H2PO4) | N、P | 0.90%、1.82% (原子分数) | 折叠层状 | SIBs | 0.25C下100次循环后277mAh/g | [ |
植物基 | 稻壳 | 外源掺杂(硫脲) | S、N | 5.34%、4.85%(质量分数) | 多孔炭 | LIBs | 1A/g下1200次循环后632mAh/g | [ |
植物基 | 刀豆壳 | 外源掺杂 (NH4B5O8·4H2O) | N、B | 2.03%、3.12% (质量分数) | 多孔炭 | SCs | 1A/g下369F/g(6mol/L KOH) | [ |
植物基 | 木材 | 外源掺杂 (硼酸、氨水) | B、N | — | 多孔炭 | SCs | 0.2A/g下318F/g(1mol/L H2SO4) | [ |
植物基 | 小麦粉 | 外源掺杂 (尿素、碘化钾) | N、I | 1.30%、0.65% (原子分数) | 多孔炭 | Li-S | 0.1C下100次循环后 916.7mAh/g | [ |
植物基 | 药渣 | 外源掺杂(三聚氰胺、硫代乙酰胺) | S、N | 8.8%、4.6%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后1060mAh/g | [ |
植物基 | 淀粉 | 外源掺杂 (尿素、H2S) | S、N | 2.11%、5.22% (原子分数) | 多孔炭 | SIBs | 8A/g下3000次循环后156mAh/g | [ |
植物基 | 豆渣 | 自掺杂 | N、O | 2.02%、8.04%(原子分数) | 多孔炭 | Li-S | 1C下600次循环后435.7mAh/g | [ |
植物基 | 榕树根 | 自掺杂 | N、O | 15.17%、1.0%(质量分数) | 层状多孔炭 | Li-S | 0.1C下200次循环后1047mAh/g | [ |
动物基 | 甲壳素 | 自掺杂 | N | 7.29%(原子分数) | 纳米纤维 | SIBs | 0.05A/g下50次循环后320.6mAh/g | [ |
动物基 | 乌贼 | 自掺杂 | N | 9.72%(原子分数) | 纳米球形 | LICs | 1A/g下1000次循环后218.4mAh/g | [ |
动物基 | 猪骨 | 自掺杂 | N、P | 3.42%、0.25%(质量分数) | 多孔炭 | LIBs | 0.5A/g下500次循环后640mAh/g | [ |
动物基 | 鱼皮 | 自掺杂 | N、O、S | 14.02%、8.18%、2.25% (原子分数) | 炭纳米片 | SCs | 0.1A/g下438F/g(6mol/L KOH) | [ |
动物基 | 山羊毛 | 自掺杂 | N、O、P | 3.70%、5.69%、3.37% (原子分数) | 多孔炭 | Li-S | 0.2C下300次循环后489mAh/g | [ |
动物基 | 豆虫 | 自掺杂 | N、O、 P、S | 4.36%、12.86%、0.21%、0.23%(原子分数) | 多孔炭 | SCs | 0.1A/g下371.8F/g(6mol/L KOH) | [ |
微生物基 | 浮萍 | 自掺杂 | N | 4.31%(原子分数) | 多孔炭 | LIBs | 0.1A/g下100次循环后1071mAh/g | [ |
微生物基 | 黑曲霉菌 | 外源掺杂(NH3) | N | — | 管状多孔炭 | SCs | 1A/g下298F/g(6mol/L KOH) | [ |
微生物基 | 细菌纤维素 | 外源掺杂(N3P3Cl6) | N、P | 2.82%、2.76%(原子分数) | 多孔炭 | SIBs | 0.1A/g下150次循环后199mAh/g | [ |
微生物基 | 海带 | 自掺杂 | S、N | 9.12%、4.52%(质量分数) | 炭纳米片 | SIBs | 0.1A/g下300次循环后214mAh/g | [ |
26 | MA Di, WU Guang, WAN Jiafeng, et al. Oxygen-enriched hierarchical porous carbon derived from biowaste sunflower heads for high-performance supercapacitors[J]. RSC Advances, 2015, 5(130): 107785-107792. |
27 | ZHENG Shuang, LUO Yuan, ZHANG Kaiyou, et al. Nitrogen and phosphorus co-doped mesoporous carbon nanosheets derived from bagasse for lithium-ion batteries[J]. Materials Letters, 2021, 290: 129459. |
28 | TAO Shi, XU Wei, ZHENG Jihui, et al. Soybean roots-derived N, P co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries[J]. Carbon, 2021, 178: 233-242. |
29 | LUO Lu, LUO Lingcong, DENG Jianping, et al. High performance supercapacitor electrodes based on B/N co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment[J]. International Journal of Hydrogen Energy, 2021, 46(63): 31927-31937. |
30 | WANG Boyao, WANG Hsiaotsu, CHEN Lingyen, et al. Nonlinear bandgap opening behavior of BN co-doped graphene[J]. Carbon, 2016, 107: 857-864. |
31 | SCHIROS Theanne, NORDLUND Dennis, PALOVA Lucia, et al. Atomistic interrogation of B-N codopant structures and their electronic effects in graphene[J]. ACS Nano, 2016, 10(7): 6574-6584. |
32 | 刘铎. 木竹材衍生碳基超级电容器电极材料的制备及其性能研究[D]. 杭州: 浙江农林大学, 2016. |
LIU Duo. Study on the preparation and properties of wood and bamboo derived carbon based supercapacior electrode materials[D]. Hangzhou: Zhejiang A & F University, 2016. | |
33 | REN Juan, ZHOU Yibei, WU Huali, et al. Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2019, 30: 121-131. |
34 | NIU Jin, LIU Mengyue, XU Feng, et al. Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors[J]. Carbon, 2018, 140: 664-672. |
35 | BIAN Zhentao, WU Chunjie, YUAN Chenglong, et al. One-step production of N-O-P-S co-doped porous carbon from bean worms for supercapacitors with high performance[J]. RSC Advances, 2020, 10(51): 30756-30766. |
36 | CAO Lihua, LI Huiling, XU Zhaoxiu, et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor[J]. Diamond and Related Materials, 2021, 114: 108316. |
37 | 毕宏晖, 焦帅, 魏风, 等. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888. |
BI Honghui, JIAO Shuai, WEI Feng, et al. Preparation of coral-like nitrogen-doped porous carbons and its supercapacitive properties[J]. CIESC Journal, 2020, 71(6): 2880-2888. | |
38 | QIN Decai, LIU Zhanying, ZHAO Yanzhang, et al. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode[J]. Carbon, 2018, 130: 664-671. |
39 | CUI Jinlong, QIU Yang, ZHANG Haibang, et al. Sulfur-and nitrogen-doped rice husk-derived C/SiO x composites as high-performance lithium-ion battery anodes[J]. Solid State Ionics, 2021, 361: 115548. |
40 | REN Juan, ZHOU Yibei, GUO Meichen, et al. Novel sustainable nitrogen, iodine-dual-doped hierarchical porous activated carbon as a superior host material for high performance lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2018, 43(43): 20022-20032. |
41 | WAN Hongri, SHEN Xiran, JIANG Hao, et al. Biomass-derived N/S dual-doped porous hard-carbon as high-capacity anodes for lithium/sodium ions batteries[J]. Energy, 2021, 231: 121102. |
42 | HE Liuliu, SUN Wang, SUN Kening, et al. Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage[J]. Journal of Power Sources, 2022, 526: 231019. |
43 | FENG Huagui, ZHANG Miao, KANG Jinwei, et al. Nitrogen and oxygen dual-doped porous carbon derived from natural ficus microcarpas as host for high performance lithium-sulfur batteries[J]. Materials Research Bulletin, 2019, 113: 70-76. |
44 | JIANG Jiangmin, ZHANG Yadi, LI Zhiwei, et al. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors[J]. Journal of Colloid and Interface Science, 2020, 567: 75-83. |
45 | ZHAO Qian, MENG Yan, LI Jing, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method[J]. Applied Surface Science, 2019, 481: 473-483. |
46 | NING Ke, ZHAO Guangzhen, LIU Hanxiao, et al. N and S co-doped 3D hierarchical porous carbon as high-performance electrode material for supercapacitors[J]. Diamond and Related Materials, 2022, 126: 109080. |
47 | YANG Shuhua, HAN Zhenzhen, SUN Jing, et al. Preparation of defective ZnFe2O4/graphene composites and their charge storage properties[J]. Electrochemistry Communications, 2018, 92: 19-23. |
1 | SAINI Sunaina, CHAND Prakash, JOSHI Aman. Biomass derived carbon for supercapacitor applications: Review[J]. Journal of Energy Storage, 2021, 39: 102646. |
2 | 张伟, 安兴业, 刘利琴, 等. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
ZHANG Wei, AN Xingye, LIU Liqin, et al. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783. | |
3 | CHEN Suli, FENG Fan, MA Zifeng. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: 100447. |
4 | HAO Rui, YANG Yun, WANG Hua, et al. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries[J]. Nano Energy, 2018,45: 220-228. |
5 | SUN Dan, LI Wei, GUO Rongting, et al. Preparation of N-doped biomass C@SnO2 composites and its electrochemical performance[J]. Diamond and Related Materials, 2021, 120: 108674. |
6 | ZHU Lin, JIANG Haitao, RAN Wenxu, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries[J]. Applied Surface Science, 2019, 489: 154-164. |
7 | JIANG Guosai, SENTHIL Raja Arumugam, SUN Yanzhi, et al. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors[J]. Journal of Power Sources, 2022, 520: 230886. |
8 | AI Jingui, YANG Shuhua, SUN Yana, et al. Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors[J]. Journal of Power Sources, 2021, 484: 229221. |
9 | CHEN Feng, YANG Juan, BAI Tao, et al. Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 192: 99-109. |
10 | TIAN Sheng, GUAN Dongcai, LU Jing, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries[J]. Journal of Power Sources, 2020, 448: 227572. |
11 | SHI Weiwei, CHANG Binbin, YIN Hang, et al. Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors[J]. Sustainable Energy & Fuels, 2019, 3(5): 1201-1214. |
12 | Junke OU, DENG Haixin, ZHANG Hongwei, et al. Nitrogen and phosphorus co-doped porous carbon prepared by direct carbonization method as potential anode material for Li-ion batteries[J]. Diamond and Related Materials, 2022, 124: 108931. |
13 | ZHENG Fangcai, LIU Dong, XIA Guoliang, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 693: 1197-1204. |
14 | 杨婷婷. 生物质多孔碳材料及其复合物的制备与电化学性能的研究[D]. 长春: 吉林大学, 2018. |
YANG Tingting. Black aspergillus-derived highly porous carbon fibers for capacitive applications[D]. Changchun: Jilin University, 2018. | |
15 | WANG Haijun, YUAN Haocheng, ZHAN Wenwei, et al. Integrated N, P co-doped and dense carbon networks produced by a chemical crosslinking strategy: Facilitating high gravimetric/volumetric performance sodium ion batteries[J]. Carbon, 2020, 165: 204-215. |
16 | LI Ruizi, HUANG Jianfeng, LI Jiayin, et al. Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes[J]. Journal of Electroanalytical Chemistry, 2020, 862: 114044. |
17 | 邓秀春, 卓祖优, 白小杰, 等. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能[J]. 化工进展, 2021, 40(10): 5642-5651. |
DENG Xiuchun, ZHUO Zuyou, BAI Xiaojie, et al. Three-dimensional hierarchical porous carbon derived from spent culture substrate of white fungus and its electrochemical application[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5642-5651. | |
18 | WANG Shanxing, ZOU Kaixiang, QIAN Yunxian, et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries[J]. Carbon, 2019, 144: 745-755. |
19 | GUO Shasha, CHEN Yaxin, SHI Liluo, et al. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for high-performance lithium-ion batteries[J]. Applied Surface Science, 2018, 437: 136-143. |
20 | WAN Hongri, JU Xinzhe, HE Tiantian, et al. Sulfur-doped porous carbon as high-capacity anodes for lithium and sodium ions batteries[J]. Journal of Alloys and Compounds, 2021, 863: 158078. |
21 | MARIA SUNDAR RAJ F Regan, Victor JAYA N, BOOPATHI G, et al. S-doped activated mesoporous carbon derived from the Borassus flabellifer flower as active electrodes for supercapacitors[J]. Materials Chemistry and Physics, 2020, 240: 122151. |
22 | HU Xiwei, FAN Mengying, ZHU Yangyang, et al. Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols[J]. Green Chemistry, 2019, 21(19): 5274-5283. |
23 | WANG Feng, CHEONG Jun Young, HE Qiu, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors[J]. Chemical Engineering Journal, 2021, 414: 128767. |
24 | LIN Guanfeng, WANG Qiong, YANG Xuan, et al. Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization[J]. RSC Advances, 2020, 10(30): 17768-17776. |
25 | WANG Cunjing, WU Dapeng, WANG Hongju, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity[J]. Journal of Materials Chemistry A, 2018, 6(3): 1244-1254. |
48 | 付蓉. 杂原子掺杂生物质碳的制备及超级电容器性能[D]. 大连: 大连理工大学, 2021. |
FU Rong. Preparation of heteroatom-doped biomass-derived carbon and their performance in supercapacitor[D]. Dalian: Dalian University of Technology, 2021. | |
49 | LI J, ZHENG J M, YANG Y. Studies on storage characteristics of LiNi0.4Co0.2Mn0.4O2 as cathode materials in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2007, 154(5): A427. |
50 | ZHENG J M, LI J, ZHANG Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery[J]. Solid State Ionics, 2008, 179(27/28/29/30/31/32): 1794-1799. |
51 | ZHANG Xiaoyu, JIANG W J, MAUGER A, et al. Minimization of the cation mixing in Li1+ x (NMC)1- x O2 as cathode material[J]. Journal of Power Sources, 2010, 195(5): 1292-1301. |
52 | BRUCE Peter G, FREUNBERGER Stefan A, HARDWICK Laurence J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. |
53 | FANG Xin, PENG Huisheng. A revolution in electrodes: Recent progress in rechargeable lithium-sulfur batteries[J]. Small, 2015, 11(13): 1488-1511. |
54 | YIN Lichang, LIANG Ji, ZHOU Guangmin, et al. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations[J]. Nano Energy, 2016, 25: 203-210. |
55 | PLITZ I, DUPASQUIER A, BADWAY F, et al. The design of alternative nonaqueous high power chemistries[J]. Applied Physics A, 2006, 82(4): 615-626. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[6] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[7] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[8] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[9] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[10] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[11] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[12] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[13] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[14] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[15] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |