化工进展 ›› 2024, Vol. 43 ›› Issue (1): 164-185.DOI: 10.16085/j.issn.1000-6613.2023-1265

• 专栏:化工过程强化 • 上一篇    

有机液体储氢技术催化脱氢过程强化研究进展

盖宏伟1(), 张辰君2, 屈晶莹3, 孙怀禄3, 脱永笑1(), 王斌4, 金旭2, 张茜2, 冯翔3(), CHEN De1,5   

  1. 1.中国石油大学(华东)新能源学院,山东 青岛 266580
    2.中国石油天然气股份有限公司勘探开发研究院,北京 100083
    3.中国石油大学(华东)化学化工学院,山东 青岛 266580
    4.西安交通大学化学工程与技术学院,陕西 西安 710049
    5.挪威科技大学化学工程系,挪威 特隆赫姆N -7491
  • 收稿日期:2023-07-23 修回日期:2023-11-07 出版日期:2024-01-20 发布日期:2024-02-05
  • 通讯作者: 脱永笑,冯翔
  • 作者简介:盖宏伟(2000—),男,硕士研究生,研究方向为有机储氢介质催化脱氢过程强化。E-mail:2634617620@qq.com
  • 基金资助:
    国家自然科学基金(22208374);山东省自然科学基金(ZR2020QB173);中国石油科技创新基金(2022DQ02-0607)

Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage

GAI Hongwei1(), ZHANG Chenjun2, QU Jingying3, SUN Huailu3, TUO Yongxiao1(), WANG Bin4, JIN Xu2, ZHANG Xi2, FENG Xiang3(), CHEN De1,5   

  1. 1.College of New Energy, China University of Petroleum (East China), Qingdao 266580, Shangdong, China
    2.Research Institute of Petroleum Exploration & Development, China National Petroleum Corporation, Beijing 100083, China
    3.College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shangdong, China
    4.College of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi
    5.Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N -7491, Norway
  • Received:2023-07-23 Revised:2023-11-07 Online:2024-01-20 Published:2024-02-05
  • Contact: TUO Yongxiao, FENG Xiang

摘要:

氢能是实现化石能源清洁高效利用和支撑可再生能源大规模发展的理想互联媒介,然而氢的储运是制约氢能规模化应用的关键技术瓶颈。有机氢化物(LOHC)储氢技术具有成本低、储氢密度大、安全稳定等优势,可匹配现有化石能源输运架构,有望在大规模、长距离和分布式的氢储运场景中发挥重要作用。但是,在LOHC储氢循环中,相对于发展较为成熟的加氢技术,LOHC脱氢过程效率低、稳定性差,是制约该技术发展的关键。基于此,本文综述了LOHC储氢技术催化脱氢过程强化的研究进展和发展趋势,概述了LOHC储氢基本概念和催化脱氢反应基本原理,从催化过程强化、产物分离强化、能量效率强化等方面总结了脱氢过程强化策略,通过对比不同技术手段的特点,分析了LOHC储氢技术催化脱氢过程目前亟需解决的难题,即开发高效的脱氢催化剂、提高催化脱氢过程的传热传质效率以及降低脱氢过程能耗,这对LOHC储氢技术的实际应用具有重要的参考和借鉴意义。

关键词: 有机液体储氢, 传热, 传质, 催化剂, 催化剂载体

Abstract:

Hydrogen energy serves as an ideal intermediary for the clean and efficient utilization of fossil fuels and large-scale development of renewable energy. However, the storage and transportation of hydrogen are the key technical bottlenecks that limit the application of hydrogen energy. Liquid organic hydride carrier (LOHC) hydrogen storage technology, with its advantages of low cost, high hydrogen storage density, and safety, can be integrated into existing fossil fuel transport infrastructure, making it a promising solution for large-scale, long-distance, and distributed hydrogen storage and transportation scenarios. However, compared to more mature hydrogenation technologies, the efficiency and stability of LOHC dehydrogenation process are still not high enough in the storage cycle, which however is crucial for further development of LOHC storage technology. Herein, we provide a comprehensive review of the research progress and development trends in enhancing the catalytic dehydrogenation process for LOHC hydrogen storage technology. The review outlines the fundamental concepts of LOHC hydrogen storage and the principles of catalytic dehydrogenation reactions. It further summarizes the improvement strategies for the catalytic processes, product separation techniques, and energy efficiency. By analyzing the characteristics of different technical approaches, we point out the current challenges in the catalytic dehydrogenation process of LOHC hydrogen storage technology, including the development of dehydrogenation catalysts, enhancement of heat and mass transfer and optimization of energy efficiency, and highlight the research priorities and prospects in the future.

Key words: liquid organic hydride carrier (LOHC) hydrogen storage, heat transfer, mass transfer, catalyst, catalyst support

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn