化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1363-1373.DOI: 10.16085/j.issn.1000-6613.2023-0463
• 材料科学与技术 • 上一篇
收稿日期:
2023-03-24
修回日期:
2023-04-27
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
刘轶群
作者简介:
赵国珂(1995—),女,博士,研究方向为聚合物分离膜材料。E-mail:zhaogk.bjhy@sinopec.com。
ZHAO Guoke(), ZHANG Yang, LIU Yiqun()
Received:
2023-03-24
Revised:
2023-04-27
Online:
2024-03-10
Published:
2024-04-11
Contact:
LIU Yiqun
摘要:
各类工业过程如水质软化、食用盐纯化、盐湖卤水提锂、酸和重金属资源回收等对一/二价阳离子高效分离的需求日益增长,近年来,针对上述分离体系的膜材料的研究取得了诸多进展。本文详细总结了针对一/二价阳离子分离的选择性阳离子交换膜、纳滤膜、支撑液膜和离子印迹膜的研究进展,重点梳理了相关膜材料的离子选择性优化思路和机理,对比分析了上述膜过程的特点和适用场景。基于此,作者认为,离子筛分精细化是膜分离技术的重要发展方向。在分子尺度明晰分离层的形成和演化机理,对于提高界面聚合反应可控度,实现在亚纳米尺度膜结构的精细调控至关重要。通过在膜基体内可控构建目标离子的特异性识别位点和传质通道,有望实现高选择性离子筛分。此外,具有本征规则孔道结构的新型分离膜材料,如MOFs、COFs、二维层状结构膜等,在精细筛分方面具有良好的发展潜力。
中图分类号:
赵国珂, 张杨, 刘轶群. 膜法分离一/二价阳离子的研究进展[J]. 化工进展, 2024, 43(3): 1363-1373.
ZHAO Guoke, ZHANG Yang, LIU Yiqun. Membrane technologies for monovalent/divalent cation separation[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1363-1373.
1 | WANG Yiran, ZHANG Wen, ZENG Xianjie, et al. Membranes for separation of alkali/alkaline earth metal ions: A review[J]. Separation and Purification Technology, 2021, 278: 119640. |
2 | LÓPEZ J, GIBERT O, CORTINA J L. Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview[J]. Separation and Purification Technology, 2021, 265: 118485. |
3 | LI Xianhui, MO Yinghui, QING Weihua, et al. Membrane-based technologies for lithium recovery from water lithium resources: A review[J]. Journal of Membrane Science, 2019, 591: 117317. |
4 | AFSAR N U, JI Wengen, WU Bin, et al. SPPO-based cation exchange membranes with a positively charged layer for cation fractionation[J]. Desalination, 2019, 472: 114145. |
5 | FARROKHZAD H, MOGHBELI M R, VAN GERVEN T, et al. Surface modification of composite ion exchange membranes by polyaniline[J]. Reactive and Functional Polymers, 2015, 86: 161-167. |
6 | ZHANG Dongyu, JIANG Chenxiao, LI Yuanyuan, et al. Electro-driven in situ construction of functional layer using amphoteric molecule: The role of tryptophan in ion sieving[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36626-36637. |
7 | HU Yuan, WANG Meng, WANG Duo, et al. Feasibility study on surface modification of cation exchange membranes by quaternized chitosan for improving its selectivity[J]. Journal of Membrane Science, 2008, 319(1/2): 5-9. |
8 | LAMBERT J, AVILA-RODRIGUEZ M, DURAND G, et al. Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes[J]. Journal of Membrane Science, 2006, 280(1/2): 219-225. |
9 | WANG Meng, JIA Yuxiang, YAO Tingting, et al. The endowment of monovalent selectivity to cation exchange membrane by photo-induced covalent immobilization and self-crosslinking of chitosan[J]. Journal of Membrane Science, 2013, 442: 39-47. |
10 | LI Jian, ZHOU Mali, LIN Jiuyang, et al. Mono-valent cation selective membranes for electrodialysis by introducing polyquaternium-7 in a commercial cation exchange membrane[J]. Journal of Membrane Science, 2015, 486: 89-96. |
11 | ABDU S, M-C MARTÍ-CALATAYUD, WONG J E, et al. Layer-by-layer modification of cation exchange membranes controls ion selectivity and water splitting[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1843-1854. |
12 | SAHIN S, DYKSTRA J E, ZUILHOF H, et al. Modification of cation-exchange membranes with polyelectrolyte multilayers to tune ion selectivity in capacitive deionization[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34746-34754. |
13 | WHITE N, MISOVICH M, YAROSHCHUK A, et al. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6620-6628. |
14 | ZHU Yan, AHMAD M, YANG Liu, et al. Adsorption of polyelectrolyte multilayers imparts high monovalent/divalent cation selectivity to aliphatic polyamide cation-exchange membranes[J]. Journal of Membrane Science, 2017, 537: 177-185. |
15 | AFSAR N U, SHEHZAD M A, IRFAN M, et al. Cation exchange membrane integrated with cationic and anionic layers for selective ion separation via electrodialysis[J]. Desalination, 2019, 458: 25-33. |
16 | DE GROOTH J, HAAKMEESTER B, WEVER C, et al. Long term physical and chemical stability of polyelectrolyte multilayer membranes[J]. Journal of Membrane Science, 2015, 489: 153-159. |
17 | GE Liang, LIU Xiaohe, WANG Guanhua, et al. Preparation of proton selective membranes through constructing H+ transfer channels by acid-base pairs[J]. Journal of Membrane Science, 2015, 475: 273-280. |
18 | HUANG Henghui, Liwen NIA, XU Shaoyi, et al. Novel proton exchange membrane with long-range acid-base-pair proton transfer pathways based on functionalized polyethyleneimine[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(10): 3963-3974. |
19 | WANG Liyuan, DENG Nanping, LIANG Yueyao, et al. Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton exchange membranes[J]. Journal of Power Sources, 2020, 450: 227592. |
20 | ZHAO Guodong, XU Xianlin, ZHAO Huijuan, et al. Zeolitic imidazolate framework decorated on 3D nanofiber network towards superior proton conduction for proton exchange membrane[J]. Journal of Membrane Science, 2020, 601: 117914. |
21 | HE Yubin, GE Liang, GE Zijuan, et al. Monovalent cations permselective membranes with zwitterionic side chains[J]. Journal of Membrane Science, 2018, 563: 320-325. |
22 | IRFAN M, WANG Yaoming, XU Tongwen. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J]. Chemical Engineering Journal, 2020, 383: 123171. |
23 | AFSAR N UL, GE Xiaolin, ZHAO Zhang, et al. Zwitterion membranes for selective cation separation via electrodialysis[J]. Separation and Purification Technology, 2021, 254: 117619. |
24 | XU Ping, WANG Wei, QIAN Xiaoming, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
25 | HE Yuantao, MIAO Jing, CHEN Shunquan, et al. Preparation and characterization of a novel positively charged composite hollow fiber nanofiltration membrane based on chitosan lactate[J]. RSC Advances, 2019, 9(8): 4361-4369. |
26 | LI Yunhao, WANG Shuhao, WU Wenyuan, et al. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation[J]. Journal of Membrane Science, 2022, 659: 120809. |
27 | YANG Zhao, FANG Wangxi, WANG Zhenyi, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. Journal of Membrane Science, 2021, 620: 118862. |
28 | GU Tianrun, ZHANG Runnan, ZHANG Shiyu, et al. Quaternary ammonium engineered polyamide membrane with high positive charge density for efficient Li+/Mg2+ separation[J]. Journal of Membrane Science, 2022, 659: 120802. |
29 | LUO Hao, PENG Huawen, ZHAO Qiang. High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes[J]. Applied Surface Science, 2022, 579: 152161. |
30 | XU Yang, PENG Huawen, LUO Hao, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J]. Desalination, 2022, 526: 115519. |
31 | FENG Yuxi, PENG Huawen, ZHAO Qiang. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine[J]. Separation and Purification Technology, 2022, 280: 119848. |
32 | CHENG Wei, LIU Caihong, TONG Tiezheng, et al. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength[J]. Journal of Membrane Science, 2018, 559: 98-106. |
33 | HE Rongrong, XU Shanshan, WANG Ruoyu, et al. Polyelectrolyte-based nanofiltration membranes with exceptional performance in Mg2+/Li+ separation in a wide range of solution conditions[J]. Journal of Membrane Science, 2022, 663: 121027. |
34 | HE Rongrong, DONG Chenjun, XU Shanshan, et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes[J]. Desalination, 2022, 525: 115492. |
35 | FANG Lifeng, ZHOU Mingyong, CHENG Liang, et al. Positively charged nanofiltration membrane based on cross-linked polyvinyl chloride copolymer[J]. Journal of Membrane Science, 2019, 572: 28-37. |
36 | WANG Li, REHMAN D, SUN Pengfei, et al. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16906-16915. |
37 | MI Zhiming, LIU Zhixiao, JIN Sizhuo, et al. Positively charged nanofiltration membrane prepared by polydopamine deposition followed by crosslinking for high efficiency cation separation[J]. Polymer Testing, 2021, 93: 107000. |
38 | LIANG Yuanzhe, ZHU Yuzhang, LIU Cheng, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation[J]. Nature Communications, 2020, 11: 2015. |
39 | JI Chenhao, ZHAI Zhe, JIANG Chi, et al. Recent advances in high-performance TFC membranes: A review of the functional interlayers[J]. Desalination, 2021, 500: 114869. |
40 | CHEN Kuo, ZHAO Shengchao, LAN Hongling, et al. Dual-electric layer nanofiltration membranes based on polyphenol/PEI interlayer for highly efficient Mg2+/Li+ separation[J]. Journal of Membrane Science, 2022, 660: 120860. |
41 | LI Hongwei, WANG Ying, LI Tingyu, et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine[J]. Chemical Engineering Journal, 2022, 438: 135658. |
42 | SUN Yue, ZHU Meiying, YAO Yonglin, et al. A novel approach for the selective extraction of Li+ from the leaching solution of spent lithium-ion batteries using benzo-15-crown-5 ether as extractant[J]. Separation and Purification Technology, 2020, 237: 116325. |
43 | MA P, CHEN Xiaodong, HOSSAIN M M. Lithium extraction from a multicomponent mixture using supported liquid membranes[J]. Separation Science and Technology, 2000, 35(15): 2513-2533. |
44 | SHARMA A D, PATIL N D, PATWARDHAN A W, et al. Synergistic interplay between D2EHPA and TBP towards the extraction of lithium using hollow fiber supported liquid membrane[J]. Separation Science and Technology, 2016, 51(13): 2242-2254. |
45 | POSPIECH B. Synergistic solvent extraction of Co(Ⅱ) and Li(Ⅰ) from aqueous chloride solutions with mixture of Cyanex 272 and TBP[J]. Physicochemical Problems of Mineral Processing, 2016, 52(1): 353-364. |
46 | LOZANO L J, GODÍNEZ C, DE LOS RÍOS A P, et al. Recent advances in supported ionic liquid membrane technology[J]. Journal of Membrane Science, 2011, 376(1/2): 1-14. |
47 | SHI Chenglong, JING Yan, JIA Yongzhong. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid[J]. Journal of Molecular Liquids, 2016, 215: 640-646. |
48 | ZANTE G, BOLTOEVA M, MASMOUDI A, et al. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes[J]. Journal of Membrane Science, 2019, 580: 62-76. |
49 | LIU Gui, ZHAO Zhongwei, HE Lihua. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474: 114185. |
50 | SONG Jianfeng, HUANG Tao, QIU Hongbin, et al. A critical review on membrane extraction with improved stability: Potential application for recycling metals from city mine[J]. Desalination, 2018, 440: 18-38. |
51 | SONG Jianfeng, LI Xuemei, ZHANG Yunyan, et al. Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid-liquid membrane extraction of lithium ions[J]. Journal of Membrane Science, 2014, 471: 372-380. |
52 | HUANG Tao, SONG Jianfeng, XING Lixin, et al. Impact of the ethylene content on poly (ethylene-co-vinyl alcohol) membrane morphology and performance via immersion precipitation for lithium extraction[J]. Journal of Membrane Science, 2019, 579: 172-179. |
53 | KESKIN B, ZEYTUNCU-GÖKOĞLU B, KOYUNCU I. Polymer inclusion membrane applications for transport of metal ions: A critical review[J]. Chemosphere, 2021, 279: 130604. |
54 | ZHANG Chengyi, MU Yingxin, ZHAO Song, et al. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane[J]. Desalination, 2020, 496: 114710. |
55 | HOQUE B, ALMEIDA M I G S, CATTRALL R W, et al. Effect of cross-linking on the performance of polymer inclusion membranes (PIMs) for the extraction, transport and separation of Zn(Ⅱ)[J]. Journal of Membrane Science, 2019, 589: 117256. |
56 | CAI Chunqing, YANG Fan, ZHAO Zhigang, et al. Promising transport and high-selective separation of Li(Ⅰ) from Na(Ⅰ) and K(Ⅰ) by a functional polymer inclusion membrane (PIM) system[J]. Journal of Membrane Science, 2019, 579: 1-10. |
57 | PAREDES C, RODRÍGUEZ DE SAN MIGUEL E. Selective lithium extraction and concentration from diluted alkaline aqueous media by a polymer inclusion membrane and application to seawater[J]. Desalination, 2020, 487: 114500. |
58 | LU Jian, QIN Yingying, WU Yilin, et al. Recent advances in ion-imprinted membranes: Separation and detection via ion-selective recognition[J]. Environmental Science: Water Research & Technology, 2019, 5(10): 1626-1653. |
59 | LU Jian, QIN Yingying, ZHANG Qi, et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone[J]. Applied Surface Science, 2018, 427: 931-941. |
60 | SUN Dongshu, ZHU Yanzhuo, MENG Minjia, et al. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion[J]. Separation and Purification Technology, 2017, 175: 19-26. |
61 | CUI Jiuyun, ZHANG Yufeng, WANG Yu, et al. Fabrication of lithium ion imprinted hybrid membranes with antifouling performance for selective recovery of lithium[J]. New Journal of Chemistry, 2018, 42(1): 118-128. |
62 | LIMJUCO L A, NISOLA G M, TORREJOS R E C, et al. Aerosol cross-linked crown ether diols melded with poly(vinyl alcohol) as specialized microfibrous Li+ adsorbents[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42862-42874. |
63 | LIU Weifeng, YAN Guang, ZHANG Erhui, et al. Extraction of lithium ions from acidic solution using electrochemically imprinted membrane[J]. Desalination, 2020, 496: 114751. |
64 | WANG Yuanyuan, XU Jicheng, YANG Dongya, et al. Calix[4]arenes functionalized dual-imprinted mesoporous film for the simultaneous selective recovery of lithium and rubidium[J]. Applied Organometallic Chemistry, 2018, 32(10): e4511. |
[1] | 盛稳, 余波, 郭晗, 周怀春. 基于横向剪切干涉系统的液膜厚度分布检测[J]. 化工进展, 2024, 43(2): 743-751. |
[2] | 丁红兵, 张盼盼, 陈政奇, 王世伟, 梁真馨, 孙宏军. 超音速旋流分离器湿气出口段液膜测量[J]. 化工进展, 2024, 43(2): 667-679. |
[3] | 孙宏军, 李腾, 李金霞, 丁红兵. 基于Kelvin-Helmholtz不稳定性和界面剪切作用的扰动波高预测模型[J]. 化工进展, 2024, 43(2): 609-618. |
[4] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[5] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[6] | 潘思睿, 邓文义, 苏亚欣. 电路探针测量污泥液膜厚度方法验证及应用[J]. 化工进展, 2023, 42(10): 5538-5547. |
[7] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[8] | 张逸, 刘东昊, 丁一刚. 膜技术分离稀土金属元素的研究进展[J]. 化工进展, 2022, 41(10): 5567-5577. |
[9] | 齐亚兵, 罗橙, 张思敬. 含酚废水液膜脱酚技术研究进展[J]. 化工进展, 2021, 40(S2): 348-355. |
[10] | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
[11] | 李志录, 王敏, 赵有璟, 彭正军, 白露. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
[12] | 陈宇昊, 刘家辉, 刘娟, 章洪斌, 孙海翔. 新型复合纳滤膜研究进展[J]. 化工进展, 2021, 40(5): 2665-2675. |
[13] | 赵宁, 贾慧君, 郭立强, 刘雨航, 方立德. 环状流液滴夹带率测量方法及分析[J]. 化工进展, 2021, 40(12): 6469-6478. |
[14] | 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104. |
[15] | 盛磊, 脱凌晗, 姜晓滨, 贺高红. 有机膜精确调控传质的新型溶析结晶及过程强化[J]. 化工进展, 2020, 39(5): 1692-1700. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |