化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5538-5547.DOI: 10.16085/j.issn.1000-6613.2022-2121
收稿日期:
2022-11-16
修回日期:
2023-01-19
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
邓文义
作者简介:
潘思睿(1997—),男,硕士研究生,研究方向为污泥黏附性机理。E-mail:18252588491@163.com。
基金资助:
PAN Sirui(), DENG Wenyi(
), SU Yaxin
Received:
2022-11-16
Revised:
2023-01-19
Online:
2023-10-15
Published:
2023-11-11
Contact:
DENG Wenyi
摘要:
黏附性是污泥的主要特征之一,对污泥处理处置过程有重要影响,而污泥表面液膜厚度是影响污泥黏附性的重要指标之一。本文提出了一种电路探针测量污泥液膜厚度的方法。首先,通过纯活性氧化铝验证了方法的可行性;然后进行了污泥液膜测量参数优化,包括测量电压、泥饼面积和厚度等;最后,将优化的方法应用于污泥电渗阴极液膜厚度测量,研究了污泥含水率、电渗电压和电渗时间对污泥阴极液膜厚度的影响。结果表明,污泥液膜最佳测量电压为3V,最佳泥饼面积为50mm×50mm,最佳泥饼厚度为5mm。在60%~80%(质量分数)含水率范围内,含水率对阴极液膜厚度影响较小,但对电渗电压和电渗时间影响显著,不同含水率下,阴极液膜均在30V的电渗电压和15s的电渗时间下达到最大。不同电渗工况下的液膜厚度均值在0.152~0.531mm范围内浮动。
中图分类号:
潘思睿, 邓文义, 苏亚欣. 电路探针测量污泥液膜厚度方法验证及应用[J]. 化工进展, 2023, 42(10): 5538-5547.
PAN Sirui, DENG Wenyi, SU Yaxin. Verification and application of circuit probe method for measuring the liquid film thickness of sewage sludge[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5538-5547.
已知液膜厚度/mm | s/mm | SE/mm | z值 | 95%置信区间 | |
---|---|---|---|---|---|
0.5 | 0.736 | 0.254 | 0.045 | 1.96 | [0.648, 0.825] |
2 | 2.003 | 0.313 | 0.055 | 1.96 | [1.890, 2.112] |
4 | 4.333 | 0.456 | 0.081 | 1.96 | [4.169, 4.497] |
表2 活性氧化铝液膜厚度测量值的95%置信区间
已知液膜厚度/mm | s/mm | SE/mm | z值 | 95%置信区间 | |
---|---|---|---|---|---|
0.5 | 0.736 | 0.254 | 0.045 | 1.96 | [0.648, 0.825] |
2 | 2.003 | 0.313 | 0.055 | 1.96 | [1.890, 2.112] |
4 | 4.333 | 0.456 | 0.081 | 1.96 | [4.169, 4.497] |
污泥含水率 (质量分数)/% | 电压/V | 电渗时间/s | 液膜厚度 均值/mm | 95%置信水平下的置信区间 |
---|---|---|---|---|
60 | 10 | 15 | 0.152 | [0.121, 0.183] |
60 | 20 | 15 | 0.290 | [0.270, 0.310] |
60 | 30 | 15 | 0.498 | [0.451,0.546] |
60 | 40 | 15 | 0.286 | [0.260, 0.311] |
60 | 30 | 30 | 0.267 | [0.222, 0.312] |
60 | 30 | 45 | 0.208 | [0.172, 0.244] |
60 | 30 | 60 | 0.202 | [0.171, 0.233] |
70 | 10 | 15 | 0.246 | [0.217, 0.275] |
70 | 20 | 15 | 0.315 | [0.272, 0.359] |
70 | 30 | 15 | 0.485 | [0.437, 0.533] |
70 | 40 | 15 | 0.424 | [0.379, 0.468] |
70 | 30 | 30 | 0.351 | [0.324, 0.378] |
70 | 30 | 45 | 0.430 | [0.393, 0.467] |
70 | 30 | 60 | 0.342 | [0.293, 0.392] |
80 | 10 | 15 | 0.170 | [0.139, 0.201] |
80 | 20 | 15 | 0.353 | [0.301, 0.405] |
80 | 30 | 15 | 0.531 | [0.477, 0.584] |
80 | 40 | 15 | 0.422 | [0.369, 0.474] |
80 | 30 | 30 | 0.386 | [0.345, 0.427] |
80 | 30 | 45 | 0.345 | [0.317, 0.373] |
80 | 30 | 60 | 0.400 | [0.359, 0.442] |
表3 不同电渗工况的液膜厚度均值及其95%置信区间
污泥含水率 (质量分数)/% | 电压/V | 电渗时间/s | 液膜厚度 均值/mm | 95%置信水平下的置信区间 |
---|---|---|---|---|
60 | 10 | 15 | 0.152 | [0.121, 0.183] |
60 | 20 | 15 | 0.290 | [0.270, 0.310] |
60 | 30 | 15 | 0.498 | [0.451,0.546] |
60 | 40 | 15 | 0.286 | [0.260, 0.311] |
60 | 30 | 30 | 0.267 | [0.222, 0.312] |
60 | 30 | 45 | 0.208 | [0.172, 0.244] |
60 | 30 | 60 | 0.202 | [0.171, 0.233] |
70 | 10 | 15 | 0.246 | [0.217, 0.275] |
70 | 20 | 15 | 0.315 | [0.272, 0.359] |
70 | 30 | 15 | 0.485 | [0.437, 0.533] |
70 | 40 | 15 | 0.424 | [0.379, 0.468] |
70 | 30 | 30 | 0.351 | [0.324, 0.378] |
70 | 30 | 45 | 0.430 | [0.393, 0.467] |
70 | 30 | 60 | 0.342 | [0.293, 0.392] |
80 | 10 | 15 | 0.170 | [0.139, 0.201] |
80 | 20 | 15 | 0.353 | [0.301, 0.405] |
80 | 30 | 15 | 0.531 | [0.477, 0.584] |
80 | 40 | 15 | 0.422 | [0.369, 0.474] |
80 | 30 | 30 | 0.386 | [0.345, 0.427] |
80 | 30 | 45 | 0.345 | [0.317, 0.373] |
80 | 30 | 60 | 0.400 | [0.359, 0.442] |
1 | 戴晓虎. 我国污泥处处置现状及发展趋势[J]. 科学(上海), 2020, 72(6): 30-34. |
DAI X H. Present situation and development trend of sludge treatment and disposal in China[J]. Science, 2020, 72(6): 30-34. | |
2 | BENNAMOUN L, ARLABOSSE P, LÉONARD A. Review on fundamental aspect of application of drying process to wastewater sludge[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 29-43. |
3 | SKINNER S J, STUDER L J, DIXON D R, et al. Quantification of wastewater sludge dewatering[J]. Water Research, 2015, 82: 2-13. |
4 | PEETERS B, DEWIL R, VERNIMMEN L, et al. Addition of polyaluminiumchloride (PACl) to waste activated sludge to mitigate the negative effects of its sticky phase in dewatering-drying operations[J]. Water Research, 2013, 47(11): 3600-3609. |
5 | 金澎, 朱秀伟, 亓永亮, 等. 市政污泥干燥过程中粘性的研究[J]. 干燥技术与设备, 2015, 13(5): 35-42. |
JIN P, ZHU X W, QI Y L, et al. Study of town sludge stickiness in drying process[J]. Drying Technology & Equipment, 2015, 13(5): 35-42. | |
6 | FONT R, GOMEZ-RICO M F, FULLANA A. Skin effect in the heat and mass transfer model for sewage sludge drying[J]. Separation and Purification Technology, 2011, 77(1): 146-161. |
7 | LYU F Y, LING C H, LI H, et al. Experimental research of how the boundary layer lower the pipe drag reduction in transport of dense paste[J]. Lubrication Science, 2017, 29(6): 411-422. |
8 | 赖江钿, 程明双, 余光伟, 等. 利用电动修复技术原位氧化去除黑臭底泥还原性污染物的室内模拟实验[J]. 环境工程学报, 2020, 14(7): 1779-1788. |
LAI J T, CHENG M S, YU G W, et al. Indoor simulation experiment of in situ oxidation removing the reductive pollutants in black-odorous river sediment with electrokinetic remediation[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1779-1788. | |
9 | MA D G, ZHANG S T, LI Z Y. Control of sludge-to-wall adhesion by applying a polarized electric field[J]. Drying Technology, 2007, 25(4): 639-643. |
10 | COOPER G A, ROY S. Prevention of bit balling by electro-osmosis[C]. California: Society of Petroleum Engineers, 1994. |
11 | HARIHARAN P, COOPER G, HALE A H. Bit balling reduction by electro-osmosis while drilling shale using a model BHA (Bottom Hole Assembly) [C]. Dallas: IADC/SPE Drilling Conference, 1998. |
12 | ROY S, COOPER G A. Effect of electro-osmosis on the indentation of clays[C]. Norman: The 32nd U.S. Symposium on Rock Mechanics, 1991. |
13 | SPAGNOLI G, KLITZSCH N, FERNANDEZ-STEEGER T, et al. Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving[J]. Environmental & Engineering Geoscience, 2011, 17(4): 417-426. |
14 | 任露泉. 地面机械脱附减阻仿生研究进展[J]. 中国科学E辑, 2008, 38(9): 1353-1364. |
REN L Q. Research progress of bionic drag reduction by ground mechanical desorption[J]. Science in China, 2008, 38(9): 1353-1364. | |
15 | REN L Q, CONG Q, TONG J, et al. Reducing adhesion of soil against loading shovel using bionic electro-osmosis method[J]. Journal of Terramechanics, 2001, 38(4): 211-219. |
16 | DENG W Y, ZHOU J, YU L, et al. Application of boundary electro-osmotic pulse to reduce sludge-to-wall adhesion[J]. Water Research, 2021, 195: 116982. |
17 | CHENG Y S, DENG K Y, LI T. Measurement and simulation of wall-wetted fuel film thickness[J]. International Journal of Thermal Sciences, 2010, 49(4): 733-739. |
18 | ZHOU D W, GAMBARYAN-ROISMAN T, STEPHAN P. Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 273-283. |
19 | HAN Y, SHIKAZONO N. Measurement of liquid film thickness in micro square channel[J]. International Journal of Multiphase Flow, 2009, 35(10): 896-903. |
20 | YANG H N, WEI W, SU M X, et al. Measurement of liquid water film thickness on opaque surface with diode laser absorption spectroscopy[J]. Flow Measurement and Instrumentation, 2018, 60: 110-114. |
21 | 苏明旭, MUHAMMAD A A, 蒋永, 等. 超声脉冲反射法和激光吸收光谱法同步测量流动液膜厚度[J]. 化工学报, 2018, 69(7): 2972-2978. |
SU M X, MUHAMMAD A A, JIANG Y, et al. Synchronous thickness measurements of flowing liquid film on horizontal surface by ultrasonic pulse-echo and laser absorption spectroscopy methods[J]. CIESC Journal, 2018, 69(7): 2972-2978. | |
22 | ABDULKADIR M, AZZI A, ZHAO D, et al. Liquid film thickness behaviour within a large diameter vertical 180° return bend[J]. Chemical Engineering Science, 2014, 107: 137-148. |
23 | TIWARI R, DAMSOHN M, PRASSER H M, et al. Multi-range sensors for the measurement of liquid film thickness distributions based on electrical conductance[J]. Flow Measurement and Instrumentation, 2014, 40: 124-132. |
24 | 王文武, 李春国, 王新军, 等. 金属表面流动液膜厚度的电导法测量技术研究[J]. 东方汽轮机, 2010(1): 21-25. |
WANG W W, LI C G, WANG X J, et al. A study on measurement of thickness of thin liquid film on metal surfaces[J]. Dongfang Turbine, 2010(1): 21-25. | |
25 | 石要武, 任露泉, 李建桥, 等. 土壤金属界面水膜测量的浓差极化方法[J]. 农业工程学报, 1997, 13(1): 25-29. |
SHI Y W, REN L Q, LI J Q, et al. Concentration on polarization rule of the water film between soil and metal interface[J]. Transactions of the Chinese Society of Agricultural Engineering, 1997, 13(1): 25-29. | |
26 | DENG W Y, LI X D, YAN J H, et al. Moisture distribution in sludges based on different testing methods[J]. Journal of Environmental Sciences, 2011, 23(5): 875-880. |
27 | 唐建国. 污泥深度脱水中的电渗析脱水机简介[J]. 给水排水, 2014, 40(11): 85-86. |
TANG J G. Brief introduction of electrodialysis dehydrator in sludge deep dehydration[J]. Water & Wastewater Engineering, 2014, 40(11): 85-86. | |
28 | YANG Z, PENG X F, LEE D J. Electroosmotic flow in sludge flocs[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2992-2999. |
29 | 王柳江, 刘斯宏, 汪俊波, 等. 真空预压联合电渗法处理高含水率软土模型试验[J]. 河海大学学报, 2011, 39(6): 671-675. |
WANG L J, LIU S H, WANG J B, et al. Model test for high-water-content soft soil treatment under vacuum preloading in combination with electroosmosis[J]. Journal of Hohai University, 2011, 39(6): 671-675. | |
30 | MAHMOUD A, OLIVIER J, VAXELAIRE J, et al. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering[J]. Water Research, 2010, 44(8): 2381-2407. |
31 | DENG W Y, LAI Z C, HU M H, et al. Effects of frequency and duty cycle of pulsating direct current on the electro-dewatering performance of sewage sludge[J]. Chemosphere, 2020, 243: 125372. |
32 | 赖志成. 界面电渗脉冲作用下金属表面污泥降粘的参数优化及水分迁移规律研究[D]. 上海: 东华大学, 2020. |
LAI Z C. Parameter optimization and water migration of sludge viscosity reduction on metal surface under the action of interfacial electroosmotic pulse[D]. Shanghai: Donghua University, 2020. |
[1] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[2] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[3] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[4] | 詹咏, 王慧, 韦婷婷, 朱星宇, 王先恺, 陈思思, 董滨. Mn2+强化臭氧调理对生物处理工艺的污泥原位减量效果[J]. 化工进展, 2023, 42(6): 3253-3260. |
[5] | 修浩然, 王云刚, 白彦渊, 邹立, 刘阳. 准东煤/市政污泥混燃燃烧特性及灰熔融行为分析[J]. 化工进展, 2023, 42(6): 3242-3252. |
[6] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
[7] | 常占坤, 张弛, 苏冰琴, 张聪政, 王健, 权晓慧. H2S气态基质对污泥生物沥滤处理效能的影响[J]. 化工进展, 2023, 42(5): 2733-2743. |
[8] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[9] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
[10] | 张涵, 张肖静, 马冰冰, 佴灿, 刘烁烁, 马永鹏, 宋亚丽. 以城市废弃污泥为种泥启动厌氧氨氧化工艺的可行性[J]. 化工进展, 2023, 42(2): 1080-1088. |
[11] | 郭宇晨, 刘庆林, 蒋金洋, 宗永忠, 王金伟, 李臻, 吕树祥. 含铬污泥资源化方法研究进展[J]. 化工进展, 2023, 42(2): 575-584. |
[12] | 孙千千, 刘阵, 李瑞, 张溪, 杨明德, 吴玉龙. 低温水热耦合亚铁离子活化过硫酸盐提高剩余污泥的脱水性能[J]. 化工进展, 2023, 42(2): 595-602. |
[13] | 段一航, 高宁博, 全翠. 水热处理对含油污泥热解特性及动力学影响[J]. 化工进展, 2023, 42(2): 603-613. |
[14] | 杨娟娟, 何林, 贺常晴, 李鑫钢, 隋红. 含油污泥多相复合调质降黏破乳分离过程[J]. 化工进展, 2023, 42(2): 614-623. |
[15] | 胡兆岩, 张景新, 何义亮. Fe负载污泥生物炭催化热解聚丙烯及产物特性[J]. 化工进展, 2023, 42(2): 631-640. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 148
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |