化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5061-5072.DOI: 10.16085/j.issn.1000-6613.2021-0296
李志录1,2(), 王敏1,2(), 赵有璟1,2, 彭正军1,2, 白露1,2,3
收稿日期:
2021-02-07
修回日期:
2021-03-13
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
王敏
作者简介:
李志录(1993—),男,硕士,研究方向为盐湖资源高效分离提取。E-mail:基金资助:
LI Zhilu1,2(), WANG Min1,2(), ZHAO Youjing1,2, PENG Zhengjun1,2, BAI Lu1,2,3
Received:
2021-02-07
Revised:
2021-03-13
Online:
2021-09-05
Published:
2021-09-13
Contact:
WANG Min
摘要:
可再生能源领域的发展吸引了众多学者对锂电池行业的关注,高效绿色提锂技术成为研究的重点。膜分离技术由于在连续操作中具有操作方便、运行易控、耗能低等特点在锂资源提取中展现出广阔的应用前景。本文基于锂资源提取的膜分离技术,归纳并讨论膜孔和膜表面特征对锂离子分离的影响。文章指出,离子在膜孔中的传输是其分离的基础,离子尺寸和离子在膜孔中传输形态影响其传输速率。膜孔的尺寸和形态是影响锂离子分离的关键因素,不同尺寸、形态和膜孔内电荷在分离过程中表现出不同的分离效果。基于膜表面特征,文章概括了现有荷正电膜、荷负电膜及表面亲疏水性在锂离子分离中的性能差异。最后,文章探究了膜分离技术在锂资源提取中存在的挑战和机遇,推进膜分离技术在锂资源提取方向的理论研究和实际应用。
中图分类号:
李志录, 王敏, 赵有璟, 彭正军, 白露. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072.
LI Zhilu, WANG Min, ZHAO Youjing, PENG Zhengjun, BAI Lu. Effects of membrane characteristics for lithium extraction[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5061-5072.
离子类型 | 裸半径/? | Stokes半径/? | 水合半径/? |
---|---|---|---|
K+ | 1.49 | 1.25 | 3.31 |
Na+ | 1.17 | 1.84 | 3.58 |
Mg2+ | 0.72 | 3.47 | 4.28 |
Li+ | 0.94 | 2.38 | 3.82 |
Al3+ | 0.53 | 4.39 | 4.75 |
表1 不同离子的裸半径、Stokes半径和水合半径
离子类型 | 裸半径/? | Stokes半径/? | 水合半径/? |
---|---|---|---|
K+ | 1.49 | 1.25 | 3.31 |
Na+ | 1.17 | 1.84 | 3.58 |
Mg2+ | 0.72 | 3.47 | 4.28 |
Li+ | 0.94 | 2.38 | 3.82 |
Al3+ | 0.53 | 4.39 | 4.75 |
1 | CHOUBEY Pankaj K, KIM Min-seuk, SRIVASTAVA Rajiv R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137. |
2 | Geological Survey U.S.. Mineral commodity summaries 2021[EB/OL]. U.S. Government Publishing Office, Reston, 2021, 98-99. . |
3 | MENG Fei, MCNEICE James, ZADEH Shirin S, et al. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(2): 123-141. |
4 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. |
5 | GUAN Peiyuan, ZHOU Lu, YU Zhenlu, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235. |
6 | SUN Xin, HAO Han, ZHAO Fuquan, et al. Tracing global lithium flow: a trade-linked material flow analysis[J]. Resources, Conservation and Recycling, 2017, 124: 50-61. |
7 | LIU Donghui, GAO Xiangyun, AN Haizhong, et al. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China[J]. Resources, Conservation and Recycling, 2019, 145: 311-321. |
8 | GROSJEAN Camille, MIRANDA Pamela Herrera, PERRIN Marion, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1735-1744. |
9 | BOWELL Robert J, LAGOS Laura, DE LOS HOYOS Camilo R, et al. Classification and characteristics of natural lithium resources[J]. Elements, 2020, 16(4): 259-264. |
10 | ZENG Xianlai, LI Jinhui, SINGH Narendra. Recycling of spent lithium-ion battery: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129-1165. |
11 | Junmin NAN, HAN Dongmei, ZUO Xiaoxi. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152: 278-284. |
12 | GUO Hui, KUANG Ge, WAN Hao, et al. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method[J]. Hydrometallurgy, 2019, 183: 9-19. |
13 | LI Xianhui, MO Yinghui, QING Weihua, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
14 | ZHANG Ye, SUN Wei, XU Rui, et al. Lithium extraction from water lithium resources through green electrochemical-battery approaches: a comprehensive review[J]. Journal of Cleaner Production, 2021, 285: 124905. |
15 | HE Maoyong, LUO Chongguang, YANG Hongjun, et al. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes[J]. Ore Geology Reviews, 2020, 117: 103277. |
16 | SONG Jianfeng, NGHIEM Long D, LI Xuemei, et al. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook[J]. Environmental Science: Water Research & Technology, 2017, 3(4): 593-597. |
17 | 乜贞, 卜令忠, 郑绵平. 中国盐湖锂资源的产业化现状——以西台吉乃尔盐湖和扎布耶盐湖为例[J]. 地球学报, 2010, 31(1): 95-101. |
NIE Zhen, BU Lingzhong, ZHENG Mianping. Lithium resources industrialization of salt lakes in China: a case study of the Xitaijinaier Salt Lake and the Zabuye Salt Lake[J]. Acta Geoscientica Sinica, 2010, 31(1): 95-101. | |
18 | MARTIN Gunther, RENTSCH Lars, Michael HÖCK, et al. Lithium market research-global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6: 171-179. |
19 | MESHRAM Pratima, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
20 | YAN Qunxuan, LI Xinhai, YIN Zhoulan, et al. A novel process for extracting lithium from lepidolite[J]. Hydrometallurgy, 2012, 121/122/123/124: 54-59. |
21 | YAN Qunxuan, LI Xinhai, WANG Zhixing, et al. Extraction of lithium from lepidolite by sulfation roasting and water leaching[J]. International Journal of Mineral Processing, 2012, 110/111: 1-5. |
22 | LUONG Van Tri, KANG Dong Jun, AN Jeon Woong, et al. Factors affecting the extraction of lithium from lepidolite[J]. Hydrometallurgy, 2013, 134/135: 54-61. |
23 | MULWANDA James, SENANAYAKE Gamini, OSKIERSKI Hans, et al. Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition[J]. Hydrometallurgy, 2021, 201:105538. |
24 | ZHANG Ye, HU Yuehua, WANG Li, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering, 2019, 139: 105868. |
25 | SHI Chenglong, JING Yan, XIAO Jiang, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J]. Separation and Purification Technology, 2017, 172: 473-479. |
26 | SWAIN Basudev. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(10): 2549-2562. |
27 | WEI Shudan, WEI Yuanfeng, CHEN Tao, et al. Porous lithium ion sieves nanofibers: general synthesis strategy and highly selective recovery of lithium from brine water[J]. Chemical Engineering Journal, 2020, 379: 122407-122415. |
28 | WANG Shulei, LI Ping, ZHANG Xin, et al. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve[J]. Hydrometallurgy, 2017, 174: 21-28. |
29 | KAZEMZADEH Hamid, Javad KARIMI-SABET, TOWFIGHI DARIAN Jafar, et al. Evaluation of polymer inclusion membrane efficiency in selective separation of lithium ion from aqueous solution[J]. Separation and Purification Technology, 2020, 251: 117298. |
30 | SUN Ying, WANG Qi, WANG Yunhao, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Separation and Purification Technology, 2021, 256: 117807. |
31 | SHI Wenhui, LIU Xiaoyue, YE Chenzeng, et al. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane[J]. Separation and Purification Technology, 2019, 210: 885-890. |
32 | Taegong RYU, SHIN Junho, GHOREISHIAN Seyed majid, et al. Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite[J]. Hydrometallurgy, 2019, 184: 22-28. |
33 | YANG Sixie, ZHANG Fan, DING Huaiping, et al. Lithium metal extraction from seawater[J]. Joule, 2018, 2(9): 1648-1651. |
34 | XIANG Wei, LIANG Shengke, ZHOU Zhiyong, et al. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium[J]. Hydrometallurgy, 2016, 166: 9-15. |
35 | ZHAO Mengyao, JI Zhiyong, ZHANG Yongguang, et al. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method[J]. Electrochimica Acta, 2017, 252: 350-361. |
36 | TAKHT RAVANCHI Maryam, KAGHAZCHI Tahereh, KARGARI Ali. Application of membrane separation processes in petrochemical industry: a review[J]. Desalination, 2009, 235(1/2/3): 199-244. |
37 | CHARCOSSET Catherine. Classical and recent applications of membrane processes in the food industry[J]. Food Engineering Reviews, 2021, 13(2): 322-343. |
38 | ADIGA Shashishekar P, JIN Chunmin, CURTISS Larry A, et al. Nanoporous membranes for medical and biological applications[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2009, 1(5): 568-581. |
39 | GOH P S, MATSUURA T, ISMAIL A F, et al. Recent trends in membranes and membrane processes for desalination[J]. Desalination, 2016, 391: 43-60. |
40 | YANG Xiaobin, YAN Linlin, MA Jun, et al. Bioadhesion-inspired surface engineering constructing robust, hydrophilic membranes for highly-efficient wastewater remediation[J]. Journal of Membrane Science, 2019, 591: 117353. |
41 | BRUGGEN B VAN DER, CURCIO E, DRIOLI E. Process intensification in the textile industry: the role of membrane technology[J]. Journal of Environmental Management, 2004, 73(3): 267-274. |
42 | JOSE Ajith J, KAPPEN Jincymol, ALAGAR Muthukaruppan. Polymeric membranes: classification, preparation, structure physiochemical, and transport mechanisms[J]. Fundamental Biomaterials: Polymers, 2018, 21-35. |
43 | YANG Gang, SHI Hong, LIU Wenqiang, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 586-591. |
44 | BI Q, ZHANG Z, ZHAO C, et al. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration[J]. Water Science and Technology, 2014, 70(10): 1690-1694. |
45 | ZHANG Hai-Zhen, XU Zhen-Liang, DING Hao, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+[J]. Desalination, 2017, 420: 158-166. |
46 | RAZMJOU Amir, HOSSEINI Ehsan, Withita CHA-UMPONG, et al. Effect of chemistry and geometry of GO nanochannels on the Li ion selectivity and recovery[J]. Desalination, 2020, 496: 114729. |
47 | XU Ping, WANG Wei, QIAN Xiaoming, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
48 | LI Xianhui, ZHANG Chunjin, ZHANG Shuning, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36. |
49 | LUO Jianquan, WAN Yinhua. Effects of pH and salt on nanofiltration—A critical review[J]. Journal of Membrane Science, 2013, 438: 18-28. |
50 | ZHANG Huiru, HE Qiming, LUO Jianquan, et al. Sharpening nanofiltration: strategies for enhanced membrane selectivity[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 39948-39966. |
51 | MARCUS Yizhak. Are ionic Stokes radii of any use?[J]. Journal of Solution Chemistry, 2012, 41(11): 2082-2090. |
52 | ZHU Yunjie, ZHU Haochen, LI Aihua, et al. Investigating the effect of inhomogeneous fixed charge distribution on dielectric exclusion in nanofiltration membranes[J]. Desalination and Water Treatment, 2019, 166: 1-8. |
53 | WANG X L, FANG Y Y, TU C H, et al. Modelling of the separation performance and electrokinetic properties of nanofiltration membranes[J]. International Reviews in Physical Chemistry, 2012, 31(1): 111-130. |
54 | CAVACO MORAO A I, SZYMCZYK A, FIEVET P, et al. Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process[J]. Journal of Membrane Science, 2008, 322(2): 320-330. |
55 | RICHARDS Laura A, SCHAFER Andrea I, RICHARDS Bryce S, et al. The importance of dehydration in determining ion transport in narrow pores[J]. Small, 2012, 8(11): 1701-1709. |
56 | VOLKOV A G, Paula S, Deamer D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics, 1997, 42: 153-160. |
57 | NIGHTINGALE E R JR. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. |
58 | SONG Chen, CORRY Ben. Intrinsic ion selectivity of narrow hydrophobic pores[J]. The Journal of Physical Chemistry B, 2009, 113(21): 7642-7649. |
59 | TANSEL Berrin. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology, 2012, 86: 119-126. |
60 | XI Yueheng, LIU Zhuang, JI Junyi, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. Journal of Membrane Science, 2018, 550: 208-218. |
61 | SAHU Subin, DI VENTRA Massimiliano, ZWOLAK Michael. Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores[J]. Nano Letters, 2017, 17(8): 4719-4724. |
62 | WEN Qi, YAN Dongxiao, LIU Feng, et al. Highly selective ionic transport through subnanometer pores in polymer films[J]. Advanced Functional Materials, 2016, 26(32): 5796-5803. |
63 | QIU S, XUE M, ZHU G. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
64 | CHEN Banglin, XIANG Shengchang, QIAN Guodong. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Accounts of Chemical Research, 2010, 43(8): 1115-1124. |
65 | ZHANG Huacheng, HOU Jue, HU Yaoxin, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Science Advances, 2018, 4(2): eaaq0066. |
66 | GUO Yi, YING Yulong, MAO Yiyin, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie International Edition, 2016, 55(48): 15120-15124. |
67 | RAZMJOU Amir, ESHAGHI Ghazaleh, OROOJI Yasin, et al. Lithium ion-selective membrane with 2D subnanometer channels[J]. Water Research, 2019, 159: 313-323. |
68 | ZHOU Xuechen, WANG Zhangxin, EPSZTEIN Razi, et al. Intrapore energy barriers govern ion transport and selectivity of desalination membranes[J]. Science Advances, 2020, 6(48): eabd9045. |
69 | RAZMJOU A, ASADNIA M, HOSSEINI E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nature Communications, 2019, 10(1): 5793. |
70 | ALI M, AHMED I, RAMIREZ P, et al. Lithium ion recognition with nanofluidic diodes through host-guest complexation in confined geometries[J]. Analytical Chemistry, 2018, 90(11): 6820-6826. |
71 | KAZEMABAD Mohammad, VERLIEFDE Arne, CORNELISSEN Emile R, et al. Crown ether containing polyelectrolyte multilayer membranes for lithium recovery[J]. Journal of Membrane Science, 2020, 595: 117432. |
72 | LU Jian, QIN Yingying, ZHANG Qi, et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone[J]. Applied Surface Science, 2018, 427: 931-941. |
73 | SUN Dongshu, ZHU Yanzhuo, MENG Minjia, et al. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion[J]. Separation and Purification Technology, 2017, 175: 19-26. |
74 | TANG Chao, YAROSHCHUK Andriy, BRUENING Merlin L. Flow through negatively charged, nanoporous membranes separates Li+ and K+ due to induced electromigration[J]. Chemical Communications, 2020, 56(74): 10954-10957. |
75 | YANG Zhao, FANG Wangxi, WANG Zhenyi, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. Journal of Membrane Science, 2021, 620: 118862. |
76 | ZHANG Ye, WANG Li, SUN Wei, et al. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 7-23. |
77 | ASHRAF Muhammad Awais, WANG Junfeng, WU Baichun, et al. Enhancement in Li+/Mg2+ separation from salt lake brine with PDA-PEI composite nanofiltration membrane[J]. Journal of Applied Polymer Science, 2020, 137(47): 49549. |
78 | LI Wei, SHI Chang, ZHOU Ayang, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
79 | LI Lei, ZHANG Suobo, ZHANG Xiaosa. Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine[J]. Journal of Membrane Science, 2009, 335(1/2): 133-139. |
80 | LI Yan, ZHAO YouJing, WANG Huaiyou, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081. |
81 | 李燕,王敏,赵有璟, 等. 纳滤膜对高镁锂比盐湖卤水镁锂分离性能研究[J]. 化工学报, 2021, 72(6): 1-21. |
LI Yan, WANG Min, ZHAO YouJing, et al. Study on separation of magnesium and lithium from salt lake brine with high magnesium-to-lithium mass ratio by nanofiltration membrane[J]. CIESC Journal, 2021,72(6): 1-21. | |
82 | SUN ShuYing, CAI LiJuan, NIE XiaoYao, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015, 7: 210-217. |
83 | WEN Xianming, MA Peihua, ZHU Chaoliang, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology, 2006, 49(3): 230-236. |
84 | SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192. |
85 | PRAMANIK Biplob Kumar, BILAL ASIF Muhammad, KENTISH Sandra, et al. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103395. |
86 | GAO Lin, WANG Huaiyou, ZHANG Yue, et al. Nanofiltration membrane characterization and application: extracting lithium in lepidolite leaching solution[J]. Membranes, 2020, 10(8): 178. |
87 | GUO Changsheng, LI Nan, QIAN Xiaoming, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “drag” effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020, 230: 115567. |
[1] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[2] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[3] | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
[4] | 陈宇昊, 刘家辉, 刘娟, 章洪斌, 孙海翔. 新型复合纳滤膜研究进展[J]. 化工进展, 2021, 40(5): 2665-2675. |
[5] | 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104. |
[6] | 范益群, 漆虹. 陶瓷纳滤膜制备与应用研究进展[J]. 化工进展, 2016, 35(06): 1786-1793. |
[7] | 孙志猛1,2,任晓晶2,赵可卉2,张忠国2,赵义平1,陈 莉1,程言君2. 耐污染聚酰胺复合纳滤膜的制备及性能[J]. 化工进展, 2012, 31(05): 1088-1095. |
[8] | 张兆利,王 枢,郭竹洁,王 娇. 耐氧化芳香聚酰胺纳滤膜的研究进展[J]. 化工进展, 2011, 30(10): 2240-. |
[9] | 李 韦华,张 慧,张金利,丁 涛,王 霖. 聚酰亚胺膜的制备及对有机物系的纳滤分离 [J]. 化工进展, 2007, 26(7): 1012-. |
[10] | 张爱勇;肖羽堂;吕晓龙;高冠道;张 萌 . 悬浮型光催化纳滤膜反应器处理H酸废水光催化降解效率及反应动力学[J]. 化工进展, 2007, 26(11): 1610-. |
[11] | 徐朝辉,童晋荣,万端极 . 超声提取-膜过滤-超临界萃取联合技术提取青蒿素 [J]. 化工进展, 2006, 25(12): 1447-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |