化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5045-5060.
宋洁尘1,2(), 夏青1,3,4, 徐宇兴1,3,4, 谭强强1,3,4()
收稿日期:
2021-03-16
修回日期:
2021-06-05
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
谭强强
作者简介:
宋洁尘(1996—),男,硕士研究生,研究方向为PEO-氧化物基复合固态电解质的制备和性能。E-mail:基金资助:
SONG Jiechen1,2(), XIA Qing1,3,4, XU Yuxing1,3,4, TAN Qiangqiang1,3,4()
Received:
2021-03-16
Revised:
2021-06-05
Online:
2021-09-05
Published:
2021-09-13
Contact:
TAN Qiangqiang
摘要:
全固态锂离子电池具有安全性高、电化学性能优异等优点,但存在电极与电解质界面相容性差、室温离子电导率低等问题。本文总结了以上问题产生的原因及解决方案。对于正极界面,可复合正极材料与固态电解质、构造三维多孔结构固态电解质或在界面处引入缓冲层。对于负极界面,可设计界面层、原位聚合生成固态电解质、构造固态电解质骨架或使用自愈合和弹性固态电解质。对于固态电解质自身,以聚氧化乙烯(PEO)固态聚合物电解质为例,可添加增塑剂、无机陶瓷填料或构造聚合物共混物与嵌段共聚物。最后,对今后的研究方向提出了建议:应注重优化电极/固态电解质界面层;探索锂离子传输机理;构建具有高离子电导率的固态电解质等。
中图分类号:
宋洁尘, 夏青, 徐宇兴, 谭强强. 全固态锂离子电池的研究进展与挑战[J]. 化工进展, 2021, 40(9): 5045-5060.
SONG Jiechen, XIA Qing, XU Yuxing, TAN Qiangqiang. Recent progress and challenges on all-solid-state lithium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5045-5060.
1 | 鲍俊杰. 全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究[D]. 合肥: 中国科学技术大学, 2018. |
BAO Junjie. Solid polymer electrolyte based on polyurethane for all-solid-state lithium batteries[D]. Hefei: University of Science and Technology of China, 2018. | |
2 | XU C J, DAI Q, GAINES L, et al. Future material demand for automotive lithium-based batteries[J]. Communications Materials, 2020, 1: 99. |
3 | KE X Y, WANG Y, REN G F, et al. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 26: 313-324. |
4 | PATIL A, PATIL V, SHIN D W, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8/9): 1913-1942. |
5 | LIANG J N, LUO J, SUN Q, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334. |
6 | ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839. |
7 | 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. |
LI Yang, DING Fei, SANG Lin, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. | |
8 | KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282: 299-322. |
9 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
10 | TARASCON J M, GOZDZ A S, SCHMUTZ C, et al. Performance of Bellcore’s plastic rechargeable Li-ion batteries[J]. Solid State Ionics, 1996, 86/87/88: 49-54. |
11 | FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. |
12 | JIAN Z L, HU Y S, JI X L, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925. |
13 | 王晓. 钙钛矿型固体氧化物燃料电池阴极材料的制备与第一性原理研究[D]. 青岛: 山东科技大学, 2018. |
WANG Xiao. Preparation and first principles study of perovskite solid oxide fuel cell cathode materials[D]. Qingdao: Shandong University of Science and Technology, 2018. | |
14 | 庄树新, 吕建先, 路密, 等. 钙钛矿型氧化物的制备及其在固体氧化物燃料电池和金属-空气电池中的应用[J]. 化学进展, 2015, 27(4): 436-447. |
ZHUANG Shuxin, Jianxian LYU, LU Mi, et al. Preparation and applications of perovskite-type oxides as electrode materials for solid oxide fuel cell and metal-air battery[J]. Progress in Chemistry, 2015, 27(4): 436-447. | |
15 | 龚钰. 掺杂石榴石型Li7La3Zr2O12陶瓷电解质的制备与电导率研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
GONG Yu. Preparation and conductivity of doped garnet-type Li7La3Zr2O12 ceramic electrolyte[D]. Harbin: Harbin Institute of Technology, 2019. | |
16 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
17 | MATSUI M, TAKAHASHI K, SAKAMOTO K, et al. Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12[J]. Dalton Trans, 2014, 43(3): 1019-1024. |
18 | 黄晓. 石榴石结构锂离子固体电解质的烧结和优化[D]. 上海: 中国科学院上海硅酸盐研究所, 2018. |
HUANG Xiao. Sintering and optimization of garnet-type Li+ion solid electrolytes[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018. | |
19 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
20 | ZHANG Z, HUANG Y, GAO H, et al. An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance[J]. Ceramics International, 2020, 46(8): 11397-11405. |
21 | FU K K, GONG Y H, DAI J Q, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. PNAS, 2016, 113(26): 7094-7099. |
22 | GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): 1705702. |
23 | LYU F, WANG Z Y, SHI L Y, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources, 2019, 441: 227175. |
24 | ZHOU D, HE Y B, LIU R L, et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2015, 5(15): 1500353. |
25 | WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301. |
26 | CHEN X Z, HE W J, DING L X, et al. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework[J]. Energy & Environmental Science, 2019, 12(3): 938-944. |
27 | XU S M, MCOWEN D W, WANG C W, et al. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode[J]. Nano Letters, 2018, 18(6): 3926-3933. |
28 | PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051-8059. |
29 | HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73. |
30 | TAKEHARA Z I. Future prospects of the lithium metal anode[J]. Journal of Power Sources, 1997, 68(1): 82-86. |
31 | FAUTEUX D, KOKSBANG R. Rechargeable lithium battery anodes: alternatives to metallic lithium[J]. Journal of Applied Electrochemistry, 1993, 23(1): 1-10. |
32 | PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141. |
33 | DONG D R, ZHOU B, SUN Y F, et al. Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries[J]. Nano Letters, 2019, 19(4): 2343-2349. |
34 | LIU B Y, GONG Y H, FU K, et al. Garnet solid electrolyte protected Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18809-18815. |
35 | HUO H Y, ZHAO N, SUN J Y, et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery[J]. Journal of Power Sources, 2017, 372: 1-7. |
36 | JU J W, WANG Y T, CHEN B B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13588-13597. |
37 | LI Y, ZHANG W, DOU Q Q, et al. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(7): 3391-3398. |
38 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176-184. |
39 | ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49): 15825-15828. |
40 | WHITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Advanced Materials, 2015, 27(43): 6922-6927. |
41 | WEI W, XU Z X, XU L, et al. Flexible ionic conducting elastomers for all-solid-state room-temperature lithium batteries[J]. ACS Applied Energy Materials, 2018, 1(12): 6769-6773. |
42 | XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
43 | CHENG S, SMITH D M, LI C Y. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes?[J]. Macromolecules, 2014, 47(12): 3978-3986. |
44 | ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. |
45 | NIEDZICKI L, KASPRZYK M, KUZIAK K, et al. Modern generation of polymer electrolytes based on lithium conductive imidazole salts[J]. Journal of Power Sources, 2009, 192(2): 612-617. |
46 | VIGNAROOBAN K, DISSANAYAKE M A K L, ALBINSSON I, et al. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes[J]. Solid State Ionics, 2014, 266: 25-28. |
47 | ECHEVERRI M, KIM N, KYU T. Ionic conductivity in relation to ternary phase diagram of poly(ethylene oxide), succinonitrile, and lithium bis(trifluoromethane)sulfonimide blends[J]. Macromolecules, 2012, 45(15): 6068-6077. |
48 | KUMAR Y, HASHMI S A, PANDEY G P. Lithium ion transport and ion-polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid[J]. Solid State Ionics, 2011, 201(1): 73-80. |
49 | CHOI J W, CHERUVALLY G, KIM Y H, et al. Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries[J]. Solid State Ionics, 2007, 178(19/20): 1235-1241. |
50 | CAPIGLIA C. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes[J]. Solid State Ionics, 1999, 118(1/2): 73-79. |
51 | LIN D C, LIU W, LIU Y Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465. |
52 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. |
53 | KUMAR B, SCANLON L, MARSH R, et al. Structural evolution and conductivity of PEO: LiBF4-MgO composite electrolytes[J]. Electrochimica Acta, 2001, 46(10/11): 1515-1521. |
54 | BANITABA S N, SEMNANI D, HEYDARI-SOURESHJANI E, et al. Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries[J]. Materials Research Express, 2019, 6(8): 0850d6. |
55 | BANITABA S N, SEMNANI D, HEYDARI-SOURESHJANI E, et al. Electrospun polyethylene oxide-based membranes incorporated with silicon dioxide, aluminum oxide and clay nanoparticles as flexible solvent-free electrolytes for lithium-ion batteries[J]. JOM, 2019, 71(12): 4537-4546. |
56 | SUGUMARAN C P, SELVARAJ D E. Effect of zirconia nano filler for enhancing energy capacity in polyethylene oxide based polymer electrolyte[J]. Journal of Nano Research, 2015, 37: 1-12. |
57 | LI J L, ZHU L, XU J N, et al. Boosting the performance of poly(ethylene oxide)-based solid polymer electrolytes by blending with poly(vinylidene fluoride-co-hexafluoropropylene) for solid-state lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(9): 7831-7840. |
58 | SENGWA R J, DHATARWAL P. Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes[J]. Electrochimica Acta, 2020, 338: 135890. |
59 | OH J S, KIM S H, KANG Y K, et al. Electrochemical characterization of blend polymer electrolytes based on poly(oligo[oxyethylene]oxyterephthaloyl) for rechargeable lithium metal polymer batteries[J]. Journal of Power Sources, 2006, 163(1): 229-233. |
60 | LALIA B S, SAMAD Y A, HASHAIKEH R. Ternary polymer electrolyte with enhanced ionic conductivity and thermo-mechanical properties for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2014, 39(6): 2964-2970. |
61 | XIAO Q Z, WANG X Z, LI W, et al. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery[J]. Journal of Membrane Science, 2009, 334(1/2): 117-122. |
62 | GHOSH A, WANG C S, KOFINAS P. Block copolymer solid battery electrolyte with high Li-ion transference number[J]. Journal of the Electrochemical Society, 2010, 157(7): A846. |
63 | NIITANI T, SHIMADA M, KAWAMURA K, et al. Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure[J]. Electrochemical and Solid-State Letters, 2005, 8(8): A385. |
64 | DÖRR T S, PELZ A, ZHANG P, et al. An ambient temperature electrolyte with superior lithium ion conductivity based on a self-assembled block copolymer[J]. Chemistry:a European Journal, 2018, 24(32): 8061-8065. |
65 | GAO K W, JIANG X, HOFFMAN Z J, et al. Optimizing the monomer structure of polyhedral oligomeric silsesquioxane for ion transport in hybrid organic-inorganic block copolymers[J]. Journal of Polymer Science, 2020, 58(2): 363-371. |
66 | WANG Z X, HUANG X J, CHEN L Q. Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes[J]. Electrochemical and Solid-State Letters, 2003, 6(11): E40. DOI:10.1149/1.1615352. |
67 | APPETECCHI G B, CROCE F, PERSI L, et al. Transport and interfacial properties of composite polymer electrolytes[J]. Electrochimica Acta, 2000, 45(8/9): 1481-1490. |
68 | SEKHON S S, SANDHAR G S. Effect of SiO2 on conductivity of PEO-AgSCN polymer electrolytes[J]. European Polymer Journal, 1998, 34(3/4): 435-438. |
69 | AONO H, SUGIMOTO E, SADAOKA Y, et al. Ionic conductivity of the lithium titanium phosphate (Li1+XMXTi2–X(PO4)3, M = Al, Sc, Y, and La) systems[J]. Journal of the Electrochemical Society, 1989, 136(2): 590-591. |
70 | WU N, CHIEN P H, LI Y T, et al. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. Journal of the American Chemical Society, 2020, 142(5): 2497-2505. |
71 | LIU K, ZHANG R H, SUN J, et al. Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46930-46937. |
72 | LIU Y L, SUN Q, ZHAO Y, et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31240-31248. |
73 | MENG J W, ZHANG Y, ZHOU X J, et al. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting[J]. Nature Communications, 2020, 11: 3716. |
74 | MANTHIRAM A, LI L J. Hybrid and aqueous lithium-air batteries[J]. Advanced Energy Materials, 2015, 5(4): 1401302. |
75 | AONO H, SUGIMOTO E, SADAOKA Y, et al. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3)[J]. Solid State Ionics, 1991, 47(3/4): 257-264. |
76 | INAGUMA Y, CHEN L Q, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689-693. |
77 | TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770. |
78 | CHENG L, CRUMLIN E J, CHEN W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes[J]. Phys. Chem. Chem. Phys., 2014, 16(34): 18294-18300. |
79 | LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791. |
80 | KITAJIMA S, KITAURA H, IM D, et al. Fabrication and impedance analysis for designed composite layers with polymer and inorganic electrolytes leading to high conductivity[J]. Solid State Ionics, 2018, 316: 29-33. |
81 | ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie, 2016, 128(40): 12726-12730. |
82 | BONIZZONI S, FERRARA C, BERBENNI V, et al. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries[J]. Physical Chemistry Chemical Physics, 2019, 21(11): 6142-6149. |
83 | WU N, CHIEN P H, QIAN Y M, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie, 2020, 132(10): 4160-4166. |
84 | PORCARELLI L, ABOUDZADEH M A, RUBATAT L, et al. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries[J]. Journal of Power Sources, 2017, 364: 191-199. |
85 | PORCARELLI L, GERBALDI C, BELLA F, et al. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries[J]. Scientific Reports, 2016, 6: 19892. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[5] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[6] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[7] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[8] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[9] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[12] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[13] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[14] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[15] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 430
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 533
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |