化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4770-4782.DOI: 10.16085/j.issn.1000-6613.2022-1979
林晓鹏(), 肖友华(), 管奕琛, 鲁晓东, 宗文杰, 傅深渊()
收稿日期:
2022-10-24
修回日期:
2022-11-27
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
肖友华,傅深渊
作者简介:
林晓鹏(1998—),男,硕士研究生,研究方向为生物基智能软材料。E-mail:2020604021025@stu.zafu.edu.cn。
基金资助:
LIN Xiaopeng(), XIAO Youhua(), GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan()
Received:
2022-10-24
Revised:
2022-11-27
Online:
2023-09-15
Published:
2023-09-28
Contact:
XIAO Youhua, FU Shenyuan
摘要:
离子聚合物-金属复合材料(IPMC)是一种电活性的智能软材料,由离子交换薄膜及其上下表面的柔性电极组成,其中柔性电极的优异性能对于提升IPMC的驱动和传感性能至关重要。目前专门针对IPMC传感的电极研究相对较少,而适用于IPMC驱动的电极一般也满足其传感的电极要求,因此本文从IPMC柔性电极的材料筛选、制备和柔性电极对驱动性能的提升策略方面综述了IPMC柔性电极的国内外研究进展。首先,简单概述了IPMC智能软材料的组成及其驱动、传感机理;其次,归纳整理了IPMC电极材料的种类和各类电极材料面临的问题,如金属电极易疲劳开裂且比电容较低的问题,导电聚合物电极的电导率较低等问题;最后,重点综述了改性柔性电极在提升IPMC驱动性能方面的研究进展并展望了其发展趋势,理想的IPMC柔性电极应兼具较高的电导率、较大的比电容和优异的稳定性特点,以期为IPMC智能软材料的开发和应用提供参考。
中图分类号:
林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782.
LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC)[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782.
1 | 何崟, 周艺颖, 刘皓, 等. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 37(7): 2664-2671. |
HE Yin, ZHOU Yiying, LIU Hao, et al. Research progress of flexible pressure sensors based on carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2664-2671. | |
2 | 李仲明, 李斌, 武思蕊, 等. 基于3D打印技术制造柔性传感器研究进展[J]. 化工进展, 2020, 39(5): 1835-1843. |
LI Zhongming, LI Bin, WU Sirui, et al. Research progress in manufacturing flexible sensors based on 3D printing technology[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1835-1843. | |
3 | ZOU Zhanan, ZHU Chengpu, LI Yan, et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite[J]. Science Advances, 2018, 4(2): eaaq0508. |
4 | DU Xiaohui, NIU Zhikai, LI Rongjin, et al. Highly adhesive, washable and stretchable on-skin electrodes based on polydopamine and silk fibroin for ambulatory electrocardiography sensing[J]. Journal of Materials Chemistry C, 2020, 8(35): 12257-12264. |
5 | RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521 (7553): 467-475. |
6 | XIAO Youhua, MAO Jie, SHAN Yejie, et al. Anisotropic electroactive elastomer for highly maneuverable soft robotics[J]. Nanoscale, 2020, 12(14): 7514-7521. |
7 | XIAO Youhua, CHEN Zheqi, MAO Jie, et al. Self-strengthening dielectric elastomer of triblock copolymer with significantly improved electromechanical performance under low voltage[J]. Macromolecular Materials and Engineering, 2021, 306(5): 2000732-2000740. |
8 | WU Guan, WU Xingjiang, XU Yijun, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications[J]. Advanced Materials, 2019, 31(25): e1806492. |
9 | TABASSIAN R, KIM Jaehwan, NGUYEN Van Hiep, et al. Functionally antagonistic hybrid electrode with hollow tubular graphene mesh and nitrogen-doped crumpled graphene for high-performance ionic soft actuators[J]. Advanced Functional Materials, 2018, 28(5): 1705714-1705723. |
10 | DELAEY J, DUBRUEL P, VAN VLIERBERGHE S. Shape-memory polymers for biomedical applications[J]. Advanced Functional Materials, 2020, 30(44): 1909047-1909070. |
11 | Qiji ZE, KUANG Xiao, WU Shuai, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation[J]. Advanced Materials, 2020, 32(4): e1906657. |
12 | KUENSTLER A S, CHEN Yuzhen, Phuong BUI, et al. Blueprinting photothermal shape-morphing of liquid crystal elastomers[J]. Advanced Materials, 2020, 32(17): e2000609. |
13 | RIHANI R T, STILLER A M, USORO J O, et al. Deployable, liquid crystal elastomer-based intracortical probes[J]. Acta Biomaterialia, 2020, 111: 54-64. |
14 | AZIMI S, GOLABCHI A, NEKOOKAR A, et al. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant[J]. Nano Energy, 2021, 83: 105781-105791. |
15 | FU Haiyan, LONG Zuchang, LAI Mingxuan, et al. Quantum dot hybridization of piezoelectric polymer films for non-transfer integration of flexible biomechanical energy harvesters[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29934-29944. |
16 | SHAHINPOOR M, KIM K J. Ionic polymer-metal composites: I. Fundamentals[J]. Smart Materials and Structures, 2001, 10(4): 819-833. |
17 | GAO Fei, WEILAND L M. The streaming potential method for modeling the electromechanical responses of ionic polymer transducers[C]Proc SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, 2009, 7292: 72924H. |
18 | FENG Guohua, CHEN Rihong. Fabrication and characterization of arbitrary shaped μIPMC transducers for accurately controlled biomedical applications[J]. Sensors and Actuators A: Physical, 2008, 143(1): 34-40. |
19 | FENG Guohua, LIU Kim-Min. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance[J]. Sensors, 2014, 14(5): 8380-8397. |
20 | LU Chao, ZHAO Lei, HU Yimin, et al. A molecular-regulation strategy towards low-voltage driven, multi degree of freedom IPMC catheters[J]. Chemical Communications, 2018, 54(63): 8733-8736. |
21 | HE Qingsong, YANG Xue, WANG Zhongyuan, et al. Advanced electro-active dry adhesive actuated by an artificial muscle constructed from an ionic polymer metal composite reinforced with nitrogen-doped carbon nanocages[J]. Journal of Bionic Engineering, 2017, 14(3): 567-578. |
22 | YU Min, HE Qingsong, YU Dingshan, et al. Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes[J]. Applied Physics Letters, 2012, 101(16): 163701-163707. |
23 | LEE Sangjun, HAN Man Jae, KIM Seong Jun, et al. A new fabrication method for IPMC actuators and application to artificial fingers[J]. Smart Materials and Structures, 2006, 15(5): 1217-1224. |
24 | BONOMO C, BRUNETTO P, FORTUNA L, et al. A tactile sensor for biomedical applications based on IPMCs[J]. IEEE Sensors Journal, 2008, 8(8): 1486-1493. |
25 | MA Suqian, ZHANG Yunpeng, LIANG Yunhong, et al. High-performance ionic-polymer-metal composite: Toward large-deformation fast-response artificial muscles[J]. Advanced Functional Materials, 2020, 30(7): 1908508-1908517. |
26 | CHANG Xiliang, CHEE Peisong, Eng Hock LIM, et al. Radio-frequency enabled ionic polymer metal composite (IPMC) actuator for drug release application[J]. Smart Materials and Structures, 2019, 28(1): 015024-015033. |
27 | MING Yue, YANG Ying, FU Ruoping, et al. IPMC sensor integrated smart glove for pulse diagnosis, Braille recognition, and human-computer interaction[J]. Advanced Materials Technologies, 2018, 3(12): 1800257-1800265. |
28 | LEE Jai-Hua, CHEE Peisong, Eng-Hock LIM, et al. Artificial intelligence-assisted throat sensor using ionic polymer-metal composite (IPMC) material[J]. Polymers, 2021, 13(18): 13183041-13183053. |
29 | AKLE B J, WALLMERSPERGER T, AKLE E, et al. High surface area electrodes in ionic polymer transducers: Numerical and experimental investigations of the chemo-electric behavior[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Proc SPIE 6929, Behavior and Mechanics of Multifunctional and Composite Materials 2008. SPIE, 2008, 6929: 128-137. |
30 | WANG Hyuck Sik, CHO Jaehyun, SONG Dae Seok, et al. High-performance electroactive polymer actuators based on ultrathick ionic polymer-metal composites with nanodispersed metal electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21998-22005. |
31 | BYUN Jong Min, HWANG Taeseon, KIM Kwang Jin. Formation of a gold nanoparticle layer for the electrodes of ionic polymer-metal composites by electroless deposition process[J]. Applied Surface Science, 2019, 470: 8-12. |
32 | YANG Liang, ZHANG Dongsheng, ZHANG Xining, et al. Fabrication of Cu/nafion-based ionic polymer metal composites by electroless plating method[J]. Integrated Ferroelectrics, 2020, 209(1): 48-57. |
33 | KIM Si Seup, JEON Jin Han, Chang Doo KEE, et al. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT: PSS[J]. Smart Materials and Structures, 2013, 22(8): 085026-085035. |
34 | TERASAWA N, ASAKA K. High-performance PEDOT: PSS/single-walled carbon nanotube/ionic liquid actuators combining electrostatic double-layer and faradaic capacitors[J]. Langmuir, 2016, 32(28): 7210-7218. |
35 | AABLOO A, DE LUCA V, DI PASQUALE G, et al. A new class of ionic electroactive polymers based on green synthesis[J]. Sensors and Actuators A: Physical, 2016, 249: 32-44. |
36 | KONG Lirong, CHEN Wei. Carbon nanotube and graphene-based bioinspired electrochemical actuators[J]. Advanced Materials, 2014, 26(7): 1025-1043. |
37 | TOROP J, AABLOO A, JAGER E W H. Novel actuators based on polypyrrole/carbide-derived carbon hybrid materials[J]. Carbon, 2014, 80: 387-395. |
38 | PALMRE V, PUGAL D, KIM K J, et al. Nanothorn electrodes for ionic polymer-metal composite artificial muscles[J]. Scientific Reports, 2014, 4: 6176-6186. |
39 | YILMAZ O C, SEN I, GURSES B O, et al. The effect of gold electrode thicknesses on electromechanical performance of nafion-based ionic polymer metal composite actuators[J]. Composites Part B: Engineering, 2019, 165: 747-753. |
40 | PALMRE V, KIM Seong Jun, PUGAL D, et al. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness[J]. International Journal of Smart and Nano Materials, 2014, 5(2): 99-113. |
41 | XU Yan, ZHAO Gang, ZHU Yuming, et al. Morphology characterization and failure mechanism investigation of Ag-IPMC[J]. Ionics, 2015, 21(4): 1089-1094. |
42 | ESMAELI E, GANJIAN M, RASTEGAR H, et al. Humidity sensor based on the ionic polymer metal composite[J]. Sensors and Actuators B: Chemical, 2017, 247: 498-504. |
43 | HASANI M, ALAEI A, MOUSAVI M S S, et al. Fabrication of ionic polymer-metal composite actuators with durable and quality-enhanced sputtered electrodes[J]. Journal of Micromechanics and Microengineering, 2019, 29(8): 085008-085030. |
44 | KIM Suran, HONG Seungbum, CHOI Yoon-Young, et al. Effect of nucleation time on bending response of ionic polymer-metal composite actuators[J]. Electrochimica Acta, 2013, 108: 547-553. |
45 | HE Zhihao, JIAO Shasha, WANG Zhengping, et al. An antifatigue liquid metal composite electrode ionic polymer-metal composite artificial muscle with excellent electromechanical properties[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14630-14639. |
46 | IKUSHIMA K, JOHN S, ONO A, et al. PEDOT/PSS bending actuators for autofocus micro lens applications[J]. Synthetic Metals, 2010, 160(17/18): 1877-1883. |
47 | Yunkyeong BAE, PARK Minjeong, KIM Minyeob, et al. A hot-pressing pretreatment of Cu substrate and dry transfer method of multilayer-stacked graphene for ionic electroactive polymers[J]. Thin Solid Films, 2020, 698: 136848-136855. |
48 | ONISHI K, SEWA S, ASAKA K, et al. Morphology of electrodes and bending response of the polymer electrolyte actuator[J]. Electrochimica Acta, 2001, 46(5): 737-743. |
49 | GUO Dongjie, WANG Long, WANG Xinjie, et al. PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator[J]. Sensors and Actuators B: Chemical, 2020, 305: 127488-127496. |
50 | 武畏志鹏, 邹华, 宁南英, 等. 柔性电极材料的国内外研究进展[J]. 功能材料, 2021, 52(2): 2039-2049. |
WU Weizhipeng, ZOU Hua, NING Nanying, et al. Research progress of flexible electrode materials at home and abroad[J]. Journal of Functional Materials, 2021, 52(2): 2039-2049. | |
51 | INAMUDDIN, KASHMERY H A. Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications[J]. Scientific Reports, 2019, 9(1): 9877-9888. |
52 | OKUZAKI H, TAKAGI S, HISHIKI F, et al. Ionic liquid/polyurethane/PEDOT: PSS composites for electro-active polymer actuators[J]. Sensors and Actuators B: Chemical, 2014, 194: 59-63. |
53 | LUQMAN M, SHAIKH H M, ANIS A, et al. A convenient and simple ionic polymer-metal composite (IPMC) actuator based on a platinum-coated sulfonated poly(ether ether ketone)-polyaniline composite membrane[J]. Polymers, 2022, 14(4): 668-680. |
54 | LIU Qing, LIU Luqi, XIE Ke, et al. Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability[J]. Journal of Materials Chemistry A, 2015, 3(16): 8380-8388. |
55 | TAJIK S, BEITOLLAHI H, NEJAD F G, et al. Recent developments in conducting polymers: Applications for electrochemistry[J]. RSC Advances, 2020, 10(62): 37834-37856. |
56 | PALMRE V, BRANDELL D, MÄEORG U, et al. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators[J]. Smart Materials and Structures, 2009, 18(9): 095028-095036. |
57 | BAUGHMAN R H, CUI Changxing, ZAKHIDOV A A, et al. Carbon nanotube actuators[J]. Science, 1999, 284(5418): 1340-1344. |
58 | COTTINET P J, SOUDERS C, TSAI S Y, et al. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships[J]. Physics Letters A, 2012, 376(12/13): 1132-1136. |
59 | ABOUTALEBI S H, CHIDEMBO A T, SALARI M, et al. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors[J]. Energy & Environmental Science, 2011, 4(5): 1855-1865. |
60 | CHENG Qian, TANG Jie, MA Jun, et al. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density[J]. Physical Chemistry Chemical Physics, 2011, 13(39): 17615-17624. |
61 | LU Luhua, LIU Jinghai, HU Ying, et al. Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode[J]. Advanced Materials, 2012, 24(31): 4317-4321. |
62 | LU Chao, YANG Ying, WANG Jian, et al. High-performance graphdiyne-based electrochemical actuators[J]. Nature Communications, 2018, 9(1): 752-763. |
63 | WU Guan, HU Ying, LIU Yang, et al. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nature Communications, 2015, 6: 7258-7266. |
64 | BHATT M D, KIM Heeju, KIM Gunn. Various defects in graphene: A review[J]. RSC Advances, 2022, 12(33): 21520-21547. |
65 | KIM Doyeon, KIM K J, Jae-do NAM, et al. Electro-chemical operation of ionic polymer-metal composites[J]. Sensors and Actuators B: Chemical, 2011, 155(1): 106-113. |
66 | PENG Wuxian, ZHANG Yajing, GAO Jinhai, et al. Fabrication and performance of ionic polymer-metal composites for biomimetic applications[J]. Sensors and Actuators A: Physical, 2019, 299: 111613-111619. |
67 | JOHANSON U, MÄEORG U, SAMMELSELG V, et al. Electrode reactions in Cu-Pt coated ionic polymer actuators[J]. Sensors and Actuators B: Chemical, 2008, 131(1): 340-346. |
68 | SANGIAN D, ZHENG Wen, SPINKS G M. Optimization of the sequential polymerization synthesis method for polypyrrole films[J]. Synthetic Metals, 2014, 189: 53-56. |
69 | WU Yanzhe, SPINKS G M, WALLACE G G. Fast trilayer polypyrrole bending actuators for high speed applications[J]. Synthetic Metals, 2006, 156(16/17): 1017-1022. |
70 | ALICI G, DEVAUD V, RENAUD P, et al. Conducting polymer microactuators operating in air[J]. Journal of Micromechanics and Microengineering, 2009, 19(2): 025017-025026. |
71 | KHAN A, INAMUDDIN, JAIN R K, et al. Thorium (Ⅳ) phosphate-polyaniline composite-based hydrophilic membranes for bending actuator application[J]. Polymer Engineering & Science, 2017, 57(3): 258-267. |
72 | MUKAI K, ASAKA K, KENJI H, et al. High-speed carbon nanotube actuators based on an oxidation/reduction reaction[J]. Chemistry, 2011, 17(39): 10965-10971. |
73 | MUKAI K, ASAKA K, SUGINO T, et al. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: Application to fast-moving, low-voltage electromechanical actuators operable in air[J]. Advanced Materials, 2009, 21(16): 1582-1585. |
74 | MUKAI K, ASAKA K, KIYOHARA K, et al. High performance fully plastic actuator based on ionic-liquid-based bucky gel[J]. Electrochimica Acta, 2008, 53(17): 5555-5562. |
75 | KIM Kwang J, SHAHINPOOR M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles[J]. Polymer, 2002, 43(3): 797-802. |
76 | OKAZAKI H, SAWADA S, KIMURA M, et al. Soft actuator using ionic polymer-metal composite composed of gold electrodes deposited using vacuum evaporation[J]. IEEE Electron Device Letters, 2012, 33(7): 1087-1089. |
77 | JEON Jin Han, Ilkwon OH, Chang-Doo KEE. Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition[J]. Sensors and Actuators B: Chemical, 2010, 146(1): 307-313. |
78 | YAN Y S, SANTANIELLO T, BETTINI L G, et al. Electroactive ionic soft actuators with monolithically integrated gold nanocomposite electrodes[J]. Advanced Materials, 2017, 29(23): 1606109-1606118. |
79 | CHEN I-Wen P, YANG Ming-Chia, YANG Chia-Hui, et al. Newton output blocking force under low-voltage stimulation for carbon nanotube-electroactive polymer composite artificial muscles[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5550-5555. |
80 | 徐岩, 赵刚, 朱玉敏, 等. Ag-IPMC物质组分变化及失效机制[J]. 稀有金属材料与工程, 2016, 45(3): 650-655. |
XU Yan, ZHAO Gang, ZHU Yumin, et al. Material component variation and failure mechanism of Ag-IPMC[J]. Rare Metal Materials and Engineering, 2016, 45(3): 650-655. | |
81 | LU Luhua, LIU Jinghai, HU Ying, et al. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design[J]. Advanced Materials, 2013, 25(9): 1270-1274. |
82 | LIU Jiaqi, LI Yuefeng, LIANG Bo, et al. Research on the synthesis and properties of PPY modified electrode IPMC[J]. IOP Conference Series: Materials Science and Engineering, 2019, 493: 012048-012055. |
83 | CHANG Longfei, ASAKA Kinji, ZHU Zicai, et al. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite[J]. Journal of Applied Physics, 2014, 115(24): 244901-244909. |
84 | STOIMENOV B L, ROSSITER J M, MUKAI T. Anisotropic surface roughness enhances the bending response of ionic polymer-metal composite (IPMC) artificial muscles[C]//SPIE Smart Materials, Nano- and Micro-Smart Systems. Proc SPIE 6413, Smart Materials IV. SPIE, 2006, 6413: 13-22. |
85 | YANG Liang, ZHANG Dongsheng, ZHANG Xining, et al. Surface roughening of Nafion membranes using different route planning for IPMCs[J]. International Journal of Smart and Nano Materials, 2020, 11(2): 117-128. |
86 | CHANG Longfei, YANG Qian, NIU Qingzheng, et al. High-performance ionic polymer-metal composite actuators fabricated with microneedle roughening[J]. Smart Materials and Structures, 2019, 28(1): 015007-015028. |
87 | CHOI N J, LEE H K, JUNG S, et al. Electroactive polymer actuator with high response speed through anisotropic surface roughening by plasma etching[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(10): 5385-5388. |
88 | SAHER S, MOON Sungwon, KIM Seong Jun, et al. O2 plasma treatment for ionic polymer metal nano composite (IPMNC) actuator[J]. Sensors and Actuators B: Chemical, 2010, 147(1): 170-179. |
89 | KIM Seong Jun, LEE In Taek, KIM Yong Hyup. Performance enhancement of IPMC actuator by plasma surface treatment[J]. Smart Materials and Structures, 2007, 16(1): N6-N11. |
90 | LIANG Yunhong, ZHANG Hao, LIN Zhaohua, et al. High specific surface area Pd/Pt electrode-based ionic polymer-metal composite for high-performance biomimetic actuation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8): 2645-2652. |
91 | WANG Yanjie, ZHU Zicai, LIU Jiayu, et al. Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMC) actuators[J]. Smart Materials and Structures, 2016, 25(8): 085012-085025. |
92 | TERASAWA N, MUKAI K, YAMATO K, et al. Superior performance of manganese oxide/multi-walled carbon nanotubes polymer actuator over ruthenium oxide/multi-walled carbon nanotubes and single-walled carbon nanotubes[J]. Sensors and Actuators B: Chemical, 2012, 171/172: 595-601. |
93 | KOTAL M, KIM Jaehwan, KIM Kwang J, et al. Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles[J]. Advanced Materials, 2016, 28(8): 1610-1615. |
94 | KOTAL M, KIM Jaehwan, TABASSIAN R, et al. Highly bendable ionic soft actuator based on nitrogen-enriched 3D hetero-nanostructure electrode[J]. Advanced Functional Materials, 2018, 28(34): 1802464-1802476. |
95 | KIM Jaehwan, Seok Hu BAE, KOTAL M, et al. Polymer actuators: Soft but powerful artificial muscles based on 3D graphene-CNT-Ni heteronanostructures (small 31/2017)[J]. Small, 2017, 13(31): 1701314-1701323. |
96 | WANG Dongxing, LU Chao, ZHAO Jingjing, et al. High energy conversion efficiency conducting polymer actuators based on PEDOT: PSS/MWCNTs composite electrode[J]. RSC Advances, 2017, 7(50): 31264-31271. |
97 | ROY S, KIM Jaehwan, KOTAL M, et al. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co-doping for electroactive ionic artificial muscles[J]. Advanced Functional Materials, 2019, 29(17): 1900161-1900171. |
98 | GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
[1] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[2] | 孙孟威, 刘壮, 谢锐, 巨晓洁, 汪伟, 褚良银. 镧离子插层MoS2膜的制备及印染高盐水处理[J]. 化工进展, 2023, 42(1): 346-353. |
[3] | 佟欣瑞, 刘彦君, 曹林峰, 毕美营, 董延甲, 吴欣瑜, 谈浚杰, 应明. 可控式citZ基因纳米盒的设计与研究[J]. 化工进展, 2021, 40(S1): 344-349. |
[4] | 周末,刘彦君,佟欣瑞,董延甲,吴欣瑜,王迎香,应明. E. coli K-12琥珀酸脱氢酶sdhC基因纳米锥的设计及自组装[J]. 化工进展, 2020, 39(2): 679-685. |
[5] | 戴国琛, 张泽天, 高文伟, 李正军. 油水乳液分离吸附材料的分离原理、构建方法和分离性能[J]. 化工进展, 2019, 38(04): 1785-1793. |
[6] | 牛方昊, 胡志德, 晏华, 杨健健, 张寒松. 油酸、聚甲基丙烯酸甲酯修饰可磁化颗粒的磁流变液的流变行为[J]. 化工进展, 2018, 37(05): 1888-1895. |
[7] | 武文, 朱铧丞, 谢锐, 张磊, 骆枫, 巨晓洁, 汪伟, 刘壮, 褚良银. 智能膜开关尺寸与孔径的匹配性对膜响应性能的影响规律[J]. 化工进展, 2018, 37(01): 223-229. |
[8] | 嵇海宁, 刘东青, 张朝阳, 程海峰, 杨力祥. 二氧化钒在红外伪装隐身技术中的应用研究进展[J]. 化工进展, 2017, 36(11): 4099-4105. |
[9] | 杨健健, 晏华, 代军, 张寒松. 磁流变液材料的性能与应用综述[J]. 化工进展, 2017, 36(01): 247-260. |
[10] | 党钊, 刘利彬, 向宇, 方文元. 超疏水-超亲油材料在油水分离中的研究进展[J]. 化工进展, 2016, 35(S1): 216-222. |
[11] | 刘壮, 谢锐, 巨晓洁, 汪伟, 褚良银. 环境刺激响应型高强度智能水凝胶研究进展[J]. 化工进展, 2016, 35(06): 1812-1819. |
[12] | 冯建中, 明耀强, 张宇帆, 郭浩槟, 黄凯鑫, 胡剑峰, 瞿金清. 异氰酸酯胶囊型自修复高分子材料研究进展[J]. 化工进展, 2016, 35(01): 175-181. |
[13] | 辛忠, 张雯斐. 超双疏表面的构筑及研究进展[J]. 化工进展, 2015, 34(02): 447-455,478. |
[14] | 陈德良. 贵金属/WO3复合纳米晶的气敏与光催化研究进展 [J]. 化工进展, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |