化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2665-2675.DOI: 10.16085/j.issn.1000-6613.2020-1094
收稿日期:
2020-06-16
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
孙海翔
作者简介:
陈宇昊(1996—),男,硕士研究生,研究方向为高分子膜材料。E-mail:基金资助:
CHEN Yuhao(), LIU Jiahui, LIU Juan, ZHANG Hongbin, SUN Haixiang()
Received:
2020-06-16
Online:
2021-05-06
Published:
2021-05-24
Contact:
SUN Haixiang
摘要:
纳滤膜因操作压力低、通量高、具有分离选择性以及运行成本较低等优势引起越来越多的关注,目前已在苦咸水脱盐、污水治理和海水淡化等领域发挥着重要作用。界面聚合作为常见的制备聚酰胺纳滤膜的方法,其聚合反应进程的调控可以有效地调节纳滤膜的微观结构,进而对其分离性能产生重要影响。本文从复合纳滤膜的结构入手,总结了当前常用的提升纳滤膜性能的改性方法,包括优化分离选择层、构建中间层、调整底膜结构三个方面,讨论了界面聚合过程反应单体、添加剂种类、制备条件等对分离层结构和分离性能的影响,并分析了底膜的孔径、孔隙率、亲疏水性等理化性质对复合膜性能的影响以及不同类型中间层的优缺点。在此基础上,总结了当前业界内亟待解决的问题,并对纳滤膜的未来发展趋势进行了展望。
中图分类号:
陈宇昊, 刘家辉, 刘娟, 章洪斌, 孙海翔. 新型复合纳滤膜研究进展[J]. 化工进展, 2021, 40(5): 2665-2675.
CHEN Yuhao, LIU Jiahui, LIU Juan, ZHANG Hongbin, SUN Haixiang. Research progress of novel composite nanofiltration membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2665-2675.
1 | LAU W J, GRAY S, MATSUURA T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches[J]. Water Research, 2015, 80:306-324. |
2 | 时雅滨, 张学彬, 田明, 等. 纳滤膜的制备及其应用现状[J]. 化工时刊, 2018, 32(10): 39-42. |
SHI Yabin, ZHANG Xuebin, TIAN Ming, et al. Study on the preparation and application of nanofiltration membrane[J]. Chemical Industry Times, 2018, 32(10): 39-42. | |
3 | MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. |
4 | PAUL Mou, JONS Steven D. Chemistry and fabrication of polymeric nanofiltration membranes: a review[J]. Polymer, 2016, 103: 417-456. |
5 | 李祥,张忠国,任晓晶,等. 纳滤膜材料研究进展[J]. 化工进展, 2014, 33(5): 1210-1218. |
LI Xiang,ZHANG Zhongguo,REN Xiaojing,et al. Progress in nanofiltration membrane materials[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1210-1218. | |
6 | XU Guorong, XU Jinmeng, FENG Houjun, et al. Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review[J]. Desalination, 2017, 417: 19-35. |
7 | ZHANG Xi, Yang LYU, YANG Haocheng, et al. Polyphenol coating as an interlayer for thin-membrane composite membranes with enhanced nanofiltration performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32512-32519. |
8 | YANG Xi, DU Yong, ZHANG Xi, et al. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance[J]. Langmuir, 2017, 33(9): 2318-2324. |
9 | YANG Zhe, ZHOU Zhiwen, GUO Hao, et al. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance[J]. Environmental Science & Technology, 2018, 52(16): 9341-9349. |
10 | QIU Wenze, WU Guangpeng, XU Zhikang. Robust coatings via catechol-amine codeposition: mechanism, kinetics, and application[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5902-5908. |
11 | KIM Hyo Won, MCCLOSKEY Bryan D, CHOI Tae Hwan, et al. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry[J]. ACS Applied Materials & Interfaces, 2013, 5(2): 233-238. |
12 | BARRETT Devin G, SILEIKA Tadas S, MESSERSMITH Philip B. Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings[J]. Chemical Communications, 2014, 50(55): 7265-7268. |
13 | WU Mengyuan, YUAN Jinqiu, WU Hong, et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability[J]. Journal of Membrane Science, 2019, 576: 131-141. |
14 | ZHAI Zhe, JIANG Chi, ZHAO Na, et al. Fabrication of advanced nanofiltration membranes with nanostrand hybrid morphology mediated by ultrafast Noria-polyethyleneimine codeposition[J]. Journal of Materials Chemistry A, 2018, 6(42): 21207-21215. |
15 | JIANG Chi, TIAN Lei, ZHAI Zhe, et al. Thin-membrane composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration[J]. Journal of Membrane Science, 2019, 589: 117244. |
16 | RAAIJMAKERS Michiel J T, BENES Nieck E. Current trends in interfacial polymerization chemistry[J]. Progress in Polymer Science, 2016, 63: 86-142. |
17 | YUAN Bingbing, JIANG Chi, LI Pengfei, et al. Ultrathin polyamide membrane with decreased porosity designed for outstanding water-softening performance and superior antifouling properties[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 43057-43067. |
18 | XU Lina, XU Jia, SHAN Baotian, et al. Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination[J]. Journal of Materials Chemistry A, 2017, 5(17): 7920-7932. |
19 | LI Qin, LIAO Zhipeng, FANG Xiaofeng, et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation[J]. Journal of Membrane Science, 2019, 584: 324-332. |
20 | HE Meng, SUN Honghong, SUN Haixiang, et al. Non-organic solvent prepared nanofiltration composite membrane from natural product tannic acid (TA) and cyclohexane-1, 4-diamine (CHD)[J]. Separation and Purification Technology, 2019, 223: 250-259. |
21 | LIU Jiangtao, HUA Dan, ZHANG Yu, et al. Precise molecular sieving architectures with janus pathways for both polar and nonpolar molecules[J]. Advanced Materials, 2018, 30(11): 1705933. |
22 | XUE Jing, JIAO Zhiwei, BI Ren, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin[J]. Journal of Membrane Science, 2019, 584: 282-289. |
23 | CHENG Jun, SHI Wenxin, ZHANG Lanhe, et al. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)[J]. Applied Surface Science, 2017, 416: 152-159. |
24 | TANG Beibei, HOU Zhibin, WU Peiyi. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC): I. Preparation, characterization and nanofiltration properties test of membrane[J]. Journal of Membrane Science, 2008, 320: 198-205. |
25 | TANG Beibei, ZOU Cheng, WU Peiyi. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization. II. The role of lithium bromide in the performance and formation of composite membrane[J]. Journal of Membrane Science, 2010, 365: 276-285. |
26 | DUAN Meirong, WANG Zhi, XU Jun, et al. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance[J]. Separation and Purification Technology, 2010, 75: 145-155. |
27 | JIANG Chi, TIAN Lei, HOU Yingfei, et al. Nanofiltration membranes with enhanced microporosity and inner-pore interconnectivity for water treatment: excellent balance between permeability and selectivity[J]. Journal of Membrane Science, 2019, 586: 192-201. |
28 | TAN Zhe, CHEN Shengfu, PENG Xinsheng, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. |
29 | BAI Langming, LIU Yatao, BOSSA Nathan, et al. Incorporation of cellulose nanocrystals (CNCs) into the polyamide layer of thin-film composite (TFC) nanofiltration membranes for enhanced separation performance and antifouling properties[J]. Environmental Science & Technology, 2018, 52(19): 11178-11187. |
30 | MANSOURPANAH Y, MADAENI S S, RAHIMPOUR A. Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance[J]. Journal of Membrane Science, 2009, 343:219-228. |
31 | SAHA N K, JOSHI S V. Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type[J]. Journal of Membrane Science, 2009, 342: 60-69. |
32 | LAU W J, ISMAIL A F, MISDAN N, et al. A recent progress in thin film composite membrane: a review[J]. Desalination, 2012, 287:190-199. |
33 | 王元. 水相添加剂对聚酰胺复合纳滤膜结构和性能的影响[D]. 西安: 西安建筑科技大学, 2015. |
WANG Yuan. The effect of the additives in the aqueours phase on the structure and performance of the polyamide thin-film composite membrane[D]. Xi’an: Xi’an University of Architecture and Technology,2015. | |
34 | ANG Micah Belle Marie Yap, TANG Chialin, GUZMAN Reyes De, et al. Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment[J]. Desalination, 2020, 481:114352. |
35 | JEONG Byeong Heon, HOEK Eric M V, YAN Yushan, et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007, 294: 1-7. |
36 | 李晓峰, 曹倩倩, 姚静雯, 等. 纳米粒子在纳滤膜改性中的研究进展[J]. 山东化工, 2020, 49(8): 102-104. |
LI Xiaofeng, CAO Qianqian, YAO Jingwen, et al. Research progress of nanoparticles in modification of nanofiltration membrane[J]. Shandong Chemical Industry, 2020, 49(8): 102-104. | |
37 | Hyun Soo LEE, Se Joon IM, KIM Jong Hak, et al. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles[J]. Desalination, 2008, 219: 48-56. |
38 | RAJREIAN Babak, RAHIMPOUR Ahmad, TADE Moses O, et al. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles[J]. Desalination, 2013, 313: 176-188. |
39 | HU Deng, XU Zhenliang, CHEN Chang. Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization[J]. Desalination, 2012, 301: 75-81. |
40 | WU Huiqing, TANG Beibei, WU Peiyi. Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles[J]. Journal of Membrane Science, 2013, 428:341-348. |
41 | YIN Jun, ZHU Guocheng, DENG Baolian. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination, 2016, 379: 93-101. |
42 | KIM Eun Sik, DENG Baolin. Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications[J]. Journal of Membrane Science, 2011, 375(1/2):46-54. |
43 | 李猛, 姚宇健, 张轩, 等. 薄层复合膜的纳米改性:设计、制备及应用[J]. 化工进展, 2019, 38(1): 365-381. |
LI Meng, YAO Yujian, ZHANG Xuan, et al. Nanomaterials for enhancing thin-film composite: design, fabrication, and application[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 365-381. | |
44 | ZHU Junyong, QIN Lijun, ULIANA Adam, et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1975-1986. |
45 | GOETHEM Cédric Van, VERBEKE Rhea, PFANMOLLER Martin, et al. The role of MOFs in thin-film nanocomposite (TFN) membranes[J]. Journal of Membrane Science, 2018, 563: 938-948. |
46 | ZHAO Yanying, LIU Yan ling, WANG Xiaomao, et al. Impacts of metal-organic frameworks on structure and performance of polyamide thin-film nanocomposite membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13724- 13734. |
47 | 周胜, 侯倩倩, 魏嫣莹, 等. 金属有机骨架膜的制备与应用进展[J]. 化工进展, 2019, 38(1): 467-484. |
ZHOU Sheng, HOU Qianqian, WEI Yanying, et al. Recent progress on the preparation and applications of metal organic framework membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 467-484. | |
48 | LIU Hengrao, ZHANG Min, ZHAO Hao, et al. Enhanced dispersibility of metal-organic frameworks (MOFs) in the organic phase via surface modification for TFN nanofiltration membrane preparation[J]. RSC Advances, 2020, 10: 4045-4057. |
49 | FAN Hongwei, GU Jiahui, MENG Hong, et al. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration[J]. Angewandte Chemie: International Edition, 2018, 57(15):4083-4087. |
50 | SHEN Jiangnan, YU Chuangchao, RUAN Huimin, et al. Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization[J]. Journal of Membrane Science, 2013, 442:18-26. |
51 | KIM In Chul, JEGAL Jonggeon, Kew Ho LEE. Effect of aqueous and organic solutions on the performance of polyamide thin-film-composite nanofiltration membranes[J]. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40(19): 2151-2163. |
52 | 陈俊超, 周文进, 孙娟, 等. 油相溶剂对PIP/TMC复合纳滤膜结构和性能的影响[J]. 浙江理工大学学报(自然科学版), 2020, 43: 104-110. |
CHEN Junchao, ZHOU Wenjin, SUN Juan, et al. Effects of oil phase solvent on structure and properties of PIP/TMC composite nanofiltration membranes[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2020,43: 104-110. | |
53 | KHORSHIDI Behnam, THUNDAT Thomas, FLECK Brian A, et al. A novel approach toward fabrication of high performance thin film composite polyamide membranes[J]. Scientific Reports, 2016, 6: 22069. |
54 | LIU Yanling, ZHU junuong, ZHENG Junfeng, et al. Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance[J]. Journal of Membrane Science, 2020, 602: 117982. |
55 | PENG Huawen, ZHANG Wenhai, HUNG Weisong, et al. Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness[J]. Advanced Materials, 2020, 32(23): 2001383. |
56 | ZHANG Yali, BENES Nieck E, LAMMERTINK Rob G H. Visualization and characterization of interfacial polymerization layer formation[J]. Lab Chip, 2015, 15(2): 575-580. |
57 | WANG Jiantao, XU Ruizhang, YANG Feng, et al. Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane[J]. Journal of Membrane Science, 2018, 556: 374-383. |
58 | SINGH Puyam S, JOSHI S V, TRIVEDI J J, et al. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions[J]. Journal of Membrane Science, 2006, 278(1/2):19-25. |
59 | LU Xinglin, NEJATI Siamak CHOO Youngwoo, et al. Elements provide a clue: nanoscale characterization of thin-film composite polyamide membranes[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 16917-16922. |
60 | GHOSH Asim K, HOEK Eric M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes[J]. Journal of Membrane Science, 2009, 336(1/2): 140-148. |
61 | LI Xue, WANG Kaiyu, HEMER Bradley, et al. Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10039-10050. |
62 | HAO Pingjia, WIJMANS J G, HE Zhenjie, et al. Effect of pore location and pore size of the support membrane on the permeance of composite membranes[J]. Journal of Membrane Science, 2020, 594: 117465. |
63 | KIM Eun Sik, KIM Young Jo, YU Qingsong, et al. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF)[J]. Journal of Membrane Science, 2009, 344(1/2): 71-81. |
64 | Tae Hoon LEE, Min Yong LEE, Hee Dae LEE, et al. Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 2017, 539: 441-450. |
65 | PARK Hee Min, Ki Yong JEE, Yong Taek LEE. Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks[J]. Journal of Membrane Science, 2017, 541: 510-518. |
66 | CHAE Hee Ro, Chung Hak LEE, PARK Pyung Kyu, et al. Synergetic effect of graphene oxide nanosheets embedded in the active and support layers on the performance of thin-film composite membranes[J]. Journal of Membrane Science, 2017, 525: 99-106. |
67 | XIE Quanling, ZHANG Shishen, HONG Zhuan, et al. A novel double-modified strategy to enhance the performance of thin-film nanocomposite nanofiltration membranes: incorporating functionalized graphenes into supporting and selective layers[J]. Chemical Engineering, 2019, 368: 186-201. |
68 | TORRES Sergio Morales, ESTEVES Carla M P, FIGUEIREDO Jose L, et al. Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials[J]. Journal of Membrane Science, 2016, 520: 326-336. |
69 | ZHAI Zhe, ZHAO Na, LIU Jiahui, et al. Advanced nanofiltration membrane fabricated on the porous organic cage tailored support for water purification application[J]. Separation & Purification Technology, 2020, 230: 115845. |
70 | 杨佳霖. PES超滤膜结构影响因素的研究及应用[D]. 北京: 北京化工大学, 2018. |
YANG Jialin. Study on the influencing factors of the structure and application of PES UF membrane[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
71 | WANG Zhenyi, WANG Zhangxin, LIN Shihong, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nature Communications, 2018, 9(1): 2004. |
72 | WANG Jingjing, YANG Haocheng, WU Mingbang, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2017, 5: 16289-16295. |
73 | KARAN Santanu, JIANG Zhiwei, LIVINGSTON Andrew G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. |
74 | WU Mingbang, Yan LYU, YANG Haocheng, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. Journal of Membrane science, 2016, 515: 238-244. |
75 | ZHAO Fengyang, JI Yanli, WENG Xiaodan, et al. High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6693-6700. |
76 | ZHOU Zhanxin, YING Yulong, PENG Xinsheng. High efficient thin-film composite membrane: ultrathin hydrophilic polyamide film on macroporous superhydrophobic polytetrafluoroethylene substrate[J]. Applied Materials Today, 2017, 8: 54-59. |
77 | GAO Shoujian, ZHU Yuzhang, GONG Yuqiong, et al. Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving[J]. ACS Nano, 2019, 13(5): 5278-5290. |
78 | GONG Genghao, WANG Ping, ZHOU Zongyang, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7349-7356. |
79 | ZHOU Zongyao, HU Yunxia, Chanhee BOO, et al. High-performance thin-membrane composite membrane with an ultrathin spray-coated carbon nanotube interlayer[J]. Environmental Science & Technology Letters, 2018, 5(5): 243-248. |
80 | WANG Luying, FANG Manquan, LIU Jing, et al. Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24082-24093. |
81 | Tae Hoon LEE, Jee Yeon OH, HONG Sung Pyo, et al. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-membrane nanocomposite membranes: importance of particle deposition[J]. Journal of Membrane Science, 2019, 570: 23-33. |
82 | ZHAI Zhe, ZHAO Na, DONG Wenjing, et al. In situ assembly of a zeolite imidazolate framework hybrid thin-membrane nanocomposite membrane with enhanced desalination performance induced by noria-polyethyleneimine codeposition[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12871-12879. |
83 | SOYEKWO Faizal, ZHANG Qiuzhen, GAO Runsheng, et al. Cellulose nanofiber intermediary to fabricate highly-permeable ultrathin nanofiltration membranes for fast water purification[J]. Journal of Membrane Science, 2017, 524: 174-185. |
84 | SUN Haixiang, LIU Jiahui, LUO Xubing, et al. Fabrication of thin-film composite polyamide nanofiltration membrane based on polyphenol intermediate layer with enhanced desalination performance[J]. Desalination, 2020, 488: 114525. |
85 | HAO Yufang, LI Quan, HE Benqiao, et al. An ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer[J]. Journal of Materials Chemistry A, 2020, 8: 5275-5283. |
[1] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[2] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[3] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[4] | 张赛晖, 李校阳, 高慧, 王丽丽. 制备聚酰胺复合膜中界面聚合反应添加剂研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
[5] | 张悦刊, 葛江波, 刘培坤, 杨兴华. 多进口旋流器流场特征及分离性能[J]. 化工进展, 2022, 41(1): 86-94. |
[6] | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
[7] | 李志录, 王敏, 赵有璟, 彭正军, 白露. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
[8] | 刘娟, 陈宇昊, 叶海星, 孙海翔. 界面聚合在渗透汽化膜分离领域的应用进展[J]. 化工进展, 2021, 40(8): 4314-4326. |
[9] | 刘祎, 汪明旺, 吕宏凌, 陈金庆. 共价有机骨架聚合物功能膜制备方法的研究进展[J]. 化工进展, 2021, 40(8): 4360-4370. |
[10] | 罗方, 王晶, 姚之侃, 张林, 陈欢林. 正渗透膜特征参数测试方法研究进展[J]. 化工进展, 2021, 40(1): 31-38. |
[11] | 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104. |
[12] | 王泽龙,王建军,刘宏宇. 两级组合式除雾器的分离性能分析[J]. 化工进展, 2020, 39(3): 890-897. |
[13] | 范益群, 漆虹. 陶瓷纳滤膜制备与应用研究进展[J]. 化工进展, 2016, 35(06): 1786-1793. |
[14] | 刘颖, 王建友. 双极膜制备及改性研究进展[J]. 化工进展, 2016, 35(01): 157-165. |
[15] | 邢雅南, 苏保卫, 甄宏艳. 耐溶剂纳滤膜的制备与应用研究进展[J]. 化工进展, 2015, 34(11): 3832-3840. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |