1 |
王波, 文湘华, 申博, 等. 正渗透技术研究现状及进展[J]. 环境科学学报, 2016, 36(9): 3118-3126.
|
|
WANG B, WEN X H, SHEN B, et al. Over view of research progress inforward osmosis technology[J]. Journal of Environmental Science, 2016, 36(9): 3118-3126.
|
2 |
许阳宇, 周律, 贾奇博, 等. 正渗透技术在污水资源化中的研究进展[J]. 化工环保, 2015, 35(2): 109-115.
|
|
XU Y Y, ZHOU L, JA Q B, et al. Research progress of forward osmosis technology in wastewater resource utilization[J]. Environmental Protection of Chemical Industry, 2015, 35(2): 109-115.
|
3 |
KIM S, CHU K H, AL-HAMADANI Y A J, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: a review[J]. Chemical Engineering Journal, 2018, 335(1): 896-914.
|
4 |
QI S, LI Y, ZHAO Y, et al. Highly efficient forward osmosis based on porous membranes—Applications and implications[J]. Environmenral Science & Technology, 2015, 49(7): 4690-4695.
|
5 |
GUO H, YAO Z K, WANG J Q, et al. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance[J]. Journal of Membrane Science, 2018, 551(1): 234-242.
|
6 |
YAO Z K, PENG L E, GUO H, et al. Seawater pretreatment with an NF-like forward osmotic membrane: membrane preparation, characterization and performance comparison with RO-like membranes[J]. Desalination, 2019, 470(15): 1-7.
|
7 |
方丽瑶, 吕慧, 付佳蓓, 等. 聚苯乙烯磺酸钠掺杂正渗透膜的制备及其性能[J]. 化工进展, 2019, 38(10): 4684-4692.
|
|
FANG L Y, LÜ H, FU J B, et al. Preparation and characterization of sodium polystyrene sulfonateparticle doped FO membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4684-4692.
|
8 |
胡念, 左浩然, 付佳蓓, 等. 石墨烯掺杂聚砜基正渗透膜的结构和性能[J]. 化工进展, 2017, 36(12): 4524-4532.
|
|
HU N, ZUO H R, FU J B, et al. Structure and performance of forward osmosis membranes based onpolysulfone substrates incorporated with grapheme[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4524-4532.
|
9 |
龙婉晓, 王良芥, 李玉平, 等. 基于碳纳米管-聚丙烯腈纤维支撑层的正渗透膜制备[J]. 过程工程学报, 2017, 17(6): 1188-1194.
|
|
LONG W X, WANG L J, LI Y P, et al. Fabrication of forward osmosis membranes with CNTs/PAN fibers supporting layer[J].The Chinese Journal of Process Engineering, 2017, 17(6): 1188-1194.
|
10 |
田浦, 王磊, 张慧慧, 等. 多壁碳纳米管改性正渗透膜及抗污染性能分析[J]. 水处理技术, 2017, 43(12): 66-69.
|
|
TIAN P, WANG L, ZHANG H H, et al.Forward osmosis membranes modified by multi-walled carbonnanotubes and analysis of its antifouling property[J]. Technology of Water Treatment, 2017, 43(12): 66-69.
|
11 |
MCCUTCHEON J R, ELIMELECH M. Modeling water flux in forward osmosis: implications for improved membrane design[J]. AlChE J., 2007, 53(7): 1736-1744.
|
12 |
CATH T Y, ELIMELECH M, MCCUTCHEON J R, et al. Standard methodology for evaluating membrane performance in osmotically driven membrane processes[J]. Desalination, 2012, 312(5): 31-38.
|
13 |
LONSDALE H K, MERTEN U, RILEY R L. Transport properties of cellulose acetate osmotic membranes[J]. Journal of Applied Polymer Science, 1965, 9(4): 1341-1362.
|
14 |
ZHAO S, ZOU L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis[J]. Journal of Membrane Science, 2011, 379(1): 459-467.
|
15 |
TAN C H, NG H Y. Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations[J]. Journal of Membrane Science, 2008, 324(1): 209-219.
|
16 |
LEE K L, BAKER R W, LONSDALE H K. Membrane for power generation by pressure retarded osmosis[J]. Journal of Membrane Science, 1981, 8(2): 141-171.
|
17 |
MCCUTCHEON J R, ELIMELECH M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of Membrane Science, 2006, 284(1): 237-247.
|
18 |
GRAY G T, MCCUTCHEON J R, ELIMELECH M. Internal concentration polarization in forward osmosis: role of membrane orientation[J]. Desalination, 2006, 197(1/2/3): 1-8.
|
19 |
JUNG D H, LEE J, KIM D Y, et al. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions[J]. Desalination, 2011, 277(1): 83-91.
|
20 |
XU Y, PENG X, TANG C Y, et al. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module[J]. Journal of Membrane Science, 2010, 348(1): 298-309.
|
21 |
GERSTANDT K, PEINEMANN K V, SKILHAGEN S E, et al. Membrane processes in energy supply for an osmotic power plant[J]. Desalination, 2008, 224(1): 64-70.
|
22 |
KUANG W, LIU Z, YU H, et al. Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component[J]. Journal of Membrane Science, 2016, 497(4): 485-493.
|
23 |
MANICKAM S S, MCCUTCHEON J R. Model thin film composite membranes for forward osmosis: demonstrating the inaccuracy of existing structural parameter models[J]. Journal of Membrane Science, 2015, 483(1): 70-74.
|
24 |
PHILLIP W A, YONG J S, ELIMELECH M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environmental Science & Technology, 2010, 44(13): 5170-5176.
|
25 |
GEISE G M, PARK H B, SAGLE A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. Journal of Membrane Science, 2011, 369(1/2): 130-138.
|
26 |
LOEB S, TITELMAN L, KORNGOLD E, et al. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane[J]. Journal of Membrane Science, 1997, 129(2): 243-249.
|
27 |
TIRAFERRI A, YIP N Y, STRAUB A P, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes[J]. Journal of Membrane Science, 2013, 444(1): 523-538.
|
28 |
YIP N Y, TIRAFERRI A, PHILLIP W A, et al. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients[J]. Environmental Science & Technology, 2011, 45(10): 4360-4369.
|
29 |
KIM Y, LEE S, SHON H K, et al. Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures [J]. Desalination, 2015, 355(1): 169-177.
|
30 |
CODAY B D, HEIL D M, XU P, et al. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes[J]. Environmental Science & Technology, 2013, 47(5): 2386-2393.
|
31 |
ACHILLI A, CATH T Y, CHILDRESS A E. Power generation with pressure retarded osmosis: an experimental and theoretical investigation[J]. Journal of Membrane Science, 2009, 343(1-2): 42-52.
|
32 |
ZHANG S, WANG K Y, T-S CHUNG, et al. Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer[J]. Journal of Membrane Science, 2010, 360(1/2): 522-535.
|
33 |
PANSF, DONG Y, ZHENG YM, et al. Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: Preparation, characterization and application for simulated antibiotic wastewater treatment[J]. Journal of Membrane Science, 2017, 523(1): 205-215.
|
34 |
WONG M C Y, MARTINEZ K, RAMON G Z, et al. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance[J]. Desalination, 2012, 287(15): 340-349.
|
35 |
KIM B, GWAK G, HONG S. Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S)[J]. Desalination, 2017, 422(15): 5-16.
|
36 |
边丽霞, 方彦彦, 王晓琳. 正渗透膜的非平衡热力学膜特征参数解析[J]. 膜科学与技术, 2016, 36(4): 75-83.
|
|
BIAN L X, FANG Y Y, WANG X L. Under standing membrane parameters of aforward osmosis membrane based on none quilibrium therm odynamics[J]. Membrane Science and Technology, 2016, 36(4): 75-83.
|
37 |
王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260.
|
|
WANG Y Q, XU T W, WANG H T. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64(1): 252-260.
|
38 |
VASSILIS GEKAS B H. Mass transfer in the membrane concentration polarization layer under turbulent cross flow : I. Critical literature review and adaptation of existing sherwood correlations to membrane operations[J]. Journal of Membrane Science, 1987, 30(2): 153-170.
|
39 |
QIN J-J, OO M H, KEKRE K A, et al. Experimental studies and modeling on concentration polarization in forward osmosis[J]. Water Science and Technology, 2010, 61(11): 2897-2904.
|
40 |
N-N BUI, ARENA J T, MCCUTCHEON J R. Proper accounting of mass transfer resistances in forward osmosis: improving the accuracy of model predictions of structural parameter [J]. Journal of Membrane Science, 2015, 492(15): 289-302.
|
41 |
SAGIV A, ZHU A, CHRISTOFIDES P D, et al. Analysis of forward osmosis desalination via two-dimensional FEM model[J]. Journal of Membrane Science, 2014, 464(15): 161-172.
|
42 |
TANG C Y, SHE Q, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1): 123-133.
|
43 |
D'HAESE A K H, MOTSA M M, MEEREN P V D, et al. A refined draw solute flux model in forward osmosis: theoretical considerations and experimental validation[J]. Journal of Membrane Science, 2016, 522(15): 316-331.
|
44 |
LOEB S, TITELMAN L, KORNGOLD E, et al. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane[J]. Journal of Membrane Science, 1997, 129(2): 243-249.
|
45 |
PARK M, LEE J J, LEE S, et al. Determination of a constant membrane structure parameter in forward osmosis processes[J]. Journal of Membrane Science, 2011, 375(1): 241-248.
|
46 |
SAGIV A, CHRISTOFIDES P D, COHEN Y, et al. On the analysis of FO mass transfer resistances via CFD analysis and film theory[J]. Journal of Membrane Science, 2015, 495(1): 198-205.
|
47 |
CHOWDHURY M R, MCCUTCHEON J R. Elucidating the impact of temperature gradients across membranes during forward osmosis: Coupling heat and mass transfer models for better prediction of real osmotic systems[J]. Journal of Membrane Science, 2018, 553(1): 189-199.
|